Tailoring Performance, Damping, and Surface Properties of Magnetorheological Elastomers via Particle-Grafting Technology

. 2018 Dec 19 ; 10 (12) : . [epub] 20181219

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30961336

Grantová podpora
17-24730S Grantová Agentura České Republiky
IGA/CPS/2017/004 Internal Grant Agency of Tomas Bata University in Zlín
LO1504 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.1.05/2.1.00/19.0409 Operational Program Research and Development for Innovations

A novel concept based on advanced particle-grafting technology to tailor performance, damping, and surface properties of the magnetorheological elastomers (MREs) is introduced. In this work, the carbonyl iron (CI) particles grafted with poly(trimethylsilyloxyethyl methacrylate) (PHEMATMS) of two different molecular weights were prepared via surface-initiated atom transfer radical polymerization and the relations between the PHEMATMS chain lengths and the MREs properties were investigated. The results show that the magnetorheological performance and damping capability were remarkably influenced by different interaction between polydimethylsiloxane chains as a matrix and PHEMATMS grafts due to their different length. The MRE containing CI grafted with PHEMATMS of higher molecular weight exhibited a greater plasticizing effect and hence both a higher relative magnetorheological effect and enhanced damping capability were observed. Besides bulk MRE properties, the PHEMATMS modifications influenced also field-induced surface activity of the MRE sheets, which manifested as notable changes in surface roughness.

Zobrazit více v PubMed

Boczkowska A., Awietjan S.F., Wroblewski R. Microstructure-property relationships of urethane magnetorheological elastomers. Smart Mater. Struct. 2007;16:1924–1930. doi: 10.1088/0964-1726/16/5/049. DOI

Cvek M., Mrlik M., Pavlinek V. A rheological evaluation of steady shear magnetorheological flow behavior using three-parameter viscoplastic models. J. Rheol. 2016;60:687–694. doi: 10.1122/1.4954249. DOI

de Vicente J., Klingenberg D.J., Hidalgo-Alvarez R. Magnetorheological fluids: A review. Soft Matter. 2011;7:3701–3710. doi: 10.1039/c0sm01221a. DOI

Cvek M., Moucka R., Sedlacik M., Pavlinek V. Electromagnetic, magnetorheological and stability properties of polysiloxane elastomers based on silane-modified carbonyl iron particles with enhanced wettability. Smart Mater. Struct. 2017;26:105003. doi: 10.1088/1361-665X/aa85c5. DOI

Li Y.C., Li J.C., Li W.H., Du H.P. A state-of-the-art review on magnetorheological elastomer devices. Smart Mater. Struct. 2014;23:123001. doi: 10.1088/0964-1726/23/12/123001. DOI

Park B.J., Fang F.F., Choi H.J. Magnetorheology: Materials and application. Soft Matter. 2010;6:5246–5253. doi: 10.1039/c0sm00014k. DOI

Bose H., Rabindranath R., Ehrlich J. Soft magnetorheological elastomers as new actuators for valves. J. Intell. Mater. Syst. Struct. 2012;23:989–994. doi: 10.1177/1045389X11433498. DOI

Dyniewicz B., Bajkowski J.M., Bajer C.I. Semi-active control of a sandwich beam partially filled with magnetorheological elastomer. Mech. Syst. Signal Process. 2015;60–61:695–705. doi: 10.1016/j.ymssp.2015.01.032. DOI

Choi S.B., Li W.H., Yu M., Du H.P., Fu J., Do P.X. State of the art of control schemes for smart systems featuring magneto-rheological materials. Smart Mater. Struct. 2016;25:043001. doi: 10.1088/0964-1726/25/4/043001. DOI

Khimi S.R., Pickering K.L. Comparison of dynamic properties of magnetorheological elastomers with existing antivibration rubbers. Compos. Part B. 2015;83:175–183. doi: 10.1016/j.compositesb.2015.08.033. DOI

Zrinyi M., Szabo D. Muscular contraction mimiced by magnetic gels. Int. J. Mod. Phys. B. 2001;15:557–563. doi: 10.1142/S0217979201005015. DOI

Behrooz M., Gordaninejad F. A flexible micro fluid transport system featuring magnetorheological elastomer. Smart Mater. Struct. 2016;25:025011. doi: 10.1088/0964-1726/25/2/025011. DOI

Cvek M., Moucka R., Sedlacik M., Babayan V., Pavlinek V. Enhancement of radio-absorbing properties and thermal conductivity of polysiloxane-based magnetorheological elastomers by the alignment of filler particles. Smart Mater. Struct. 2017;26:095005. doi: 10.1088/1361-665X/aa7ef6. DOI

Keshoju K., Sun L. Mechanical characterization of magnetic nanowire-polydimethylsiloxane composites. J. Appl. Phys. 2009;105:023515. doi: 10.1063/1.3068173. DOI

Bica I., Anitas E.M., Bunoiu M., Vatzulik B., Juganaru I. Hybrid magnetorheological elastomer: Influence of magnetic field and compression pressure on its electrical conductivity. J. Ind. Eng. Chem. 2014;20:3994–3999. doi: 10.1016/j.jiec.2013.12.102. DOI

Khimi S.R., Pickering K.L., Mace B.R. Dynamic properties of magnetorheological elastomers based on iron sand and natural rubber. J. Appl. Polym. Sci. 2015;132:41506. doi: 10.1002/app.41506. DOI

Chertovich A.V., Stepanov G.V., Kramarenko E.Y., Khokhlov A.R. New composite elastomers with giant magnetic response. Macromol. Mater. Eng. 2010;295:336–341. doi: 10.1002/mame.200900301. DOI

Fan Y.C., Gong X.L., Xuan S.H., Qin L.J., Li X.F. Effect of cross-link density of the matrix on the damping properties of magnetorheological elastomers. Ind. Eng. Chem. Res. 2013;52:771–778. doi: 10.1021/ie302536e. DOI

Plachy T., Kratina O., Sedlacik M. Porous magnetic materials based on EPDM rubber filled with carbonyl iron particles. Compos. Struct. 2018;192:126–130. doi: 10.1016/j.compstruct.2018.02.095. DOI

Fan Y.C., Gong X.L., Jiang W.Q., Zhang W., Wei B., Li W.H. Effect of maleic anhydride on the damping property of magnetorheological elastomers. Smart Mater. Struct. 2010;19:055015. doi: 10.1088/0964-1726/19/5/055015. DOI

Gong X.L., Fan Y.C., Xuan S.H., Xu Y.G., Peng C. Control of the damping properties of magnetorheological elastomers by using polycaprolactone as a temperature-controlling component. Ind. Eng. Chem. Res. 2012;51:6395–6403. doi: 10.1021/ie300317b. DOI

Khairi M.H.A., Mazlan S.A., Ubaidillah, Ahmad K.Z.K., Choi S.B., Aziz S.A.A., Yunus N.A. The field-dependent complex modulus of magnetorheological elastomers consisting of sucrose acetate isobutyrate ester. J. Intell. Mater. Syst. Struct. 2017;28:1993–2004. doi: 10.1177/1045389X16682844. DOI

Rabindranath R., Bose H. On the mobility of iron particles embedded in elastomeric silicone matrix. In: Unal H.I., editor. Proceedings of the 13th International Conference on Electrorheological Fluids and Magnetorheological Suspensions; Ankara, Turkey. 2–6 July 2012; Bristol, UK: Iop Publishing Ltd.; 2013. DOI

Yang D.L., Pacheco R., Henderson K., Hubbard K., Devlin D. Diffusion and sorption of nitroplasticizers in vinyl copolymer elastomer and its composites. J. Appl. Polym. Sci. 2014;131:40729. doi: 10.1002/app.40729. DOI

Ocalan M., McKinley G.H. High-flux magnetorheology at elevated temperatures. Rheol. Acta. 2013;52:623–641. doi: 10.1007/s00397-013-0708-4. DOI

Cvek M., Mrlik M., Ilcikova M., Mosnacek J., Munster L., Pavlinek V. Synthesis of silicone elastomers containing silyl-based polymer grafted carbonyl iron particles: An efficient way to improve magnetorheological, damping, and sensing performances. Macromolecules. 2017;50:2189–2200. doi: 10.1021/acs.macromol.6b02041. DOI

Cvek M., Mrlik M., Ilcikova M., Plachy T., Sedlacik M., Mosnacek J., Pavlinek V. A facile controllable coating of carbonyl iron particles with poly(glycidyl methacrylate): A tool for adjusting MR response and stability properties. J. Mater. Chem. C. 2015;3:4646–4656. doi: 10.1039/C5TC00319A. DOI

Tan R.X., Fan Z.Q., Xie Z.Y., Zhang M.Y., He K.J., Huang Q.H. Fabrication of large-sized high density bulk isotropic pyrocarbon materials of a special composite microstructure by fixed-bed chemical vapor deposition. Carbon. 2016;101:439–448. doi: 10.1016/j.carbon.2016.02.019. DOI

Sorokin V.V., Stepanov G.V., Shamonin M., Monkman G.J., Khokhlov A.R., Kramarenko E.Y. Hysteresis of the viscoelastic properties and the normal force in magnetically and mechanically soft magnetoactive elastomers: Effects of filler composition, strain amplitude and magnetic field. Polymer. 2015;76:191–202. doi: 10.1016/j.polymer.2015.08.040. DOI

Matyjaszewski K. Atom Transfer Radical Polymerization (ATRP): Current status and future perspectives. Macromolecules. 2012;45:4015–4039. doi: 10.1021/ma3001719. DOI

Mousazadeh H., Safa K.D., Ghadari R. Synthesis, spectroscopic characterization, and DFT studies of 1,2,3-triazole-based organosilicon compounds. J. Molec. Struct. 2018;1167:200–208. doi: 10.1016/j.molstruc.2018.03.072. DOI

Cvek M., Mrlik M., Ilcikova M., Mosnacek J., Babayan V., Kucekova Z., Humpolicek P., Pavlinek V. The chemical stability and cytotoxicity of carbonyl iron particles grafted with poly(glycidyl methacrylate) and the magnetorheological activity of their suspensions. RSC Adv. 2015;5:72816–72824. doi: 10.1039/C5RA11968E. DOI

Kim Y.H., Ahn W.J., Choi H.J., Seo Y. Fabrication and magnetic stimuli-response of polydopamine-coated core-shell structured carbonyl iron microspheres. Colloid Polym. Sci. 2016;294:329–337. doi: 10.1007/s00396-015-3786-2. DOI

de Vicente J., Bossis G., Lacis S., Guyot M. Permeability measurements in cobalt ferrite and carbonyl iron powders and suspensions. J. Magn. Magn. Mater. 2002;251:100–108. doi: 10.1016/S0304-8853(02)00484-5. DOI

Stepanov G.V., Borin D.Y., Raikher Y.L., Melenev P.V., Perov N.S. Motion of ferroparticles inside the polymeric matrix in magnetoactive elastomers. J. Phys. Condens. Matter. 2008;20:204121. doi: 10.1088/0953-8984/20/20/204121. PubMed DOI

Bodnaruk A.V., Brunhuber A., Kalita V.M., Kulyk M.M., Snarskii A.A., Lozenko A.F., Ryabchenko S.M., Shamonin M. Temperature-dependent magnetic properties of a magnetoactive elastomer: Immobilization of the soft-magnetic filler. J. Appl. Phys. 2018;123:115118. doi: 10.1063/1.5023891. DOI

Abshinova M.A., Kazantseva N.E., Saha P., Sapurina I., Kovarova J., Stejskal J. The enhancement of the oxidation resistance of carbonyl iron by polyaniline coating and consequent changes in electromagnetic properties. Polym. Degrad. Stab. 2008;93:1826–1831. doi: 10.1016/j.polymdegradstab.2008.07.008. DOI

Konig R., Muller S., Dinnebier R.E., Hinrichsen B., Muller P., Ribbens A., Hwang J., Liebscher R., Etter M., Pistidda C. The crystal structures of carbonyl iron powde—Revised using in situ synchrotron XRPD. Z. Kristallogr. Cryst. Mater. 2017;232:835–842. doi: 10.1515/zkri-2017-2067. DOI

Plachy T., Kutalkova E., Sedlacik M., Vesel A., Masar M., Kuritka I. Impact of corrosion process of carbonyl iron particles on magnetorheological behavior of their suspensions. J. Ind. Eng. Chem. 2018;66:362–369. doi: 10.1016/j.jiec.2018.06.002. DOI

Sedlacik M., Mrlik M., Babayan V., Pavlinek V. Magnetorheological elastomers with efficient electromagnetic shielding. Compos. Struct. 2016;135:199–204. doi: 10.1016/j.compstruct.2015.09.037. DOI

Fu S.Y., Feng X.Q., Lauke B., Mai Y.W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos. Part B. 2008;39:933–961. doi: 10.1016/j.compositesb.2008.01.002. DOI

Gorodov V.V., Kostrov S.A., Kamyshinskii R.A., Kramarenko E.Y., Muzafarov A.M. Modification of carbonyl iron particles by carboxyl-containing polydimethylsiloxanes. Russ. Chem. Bull. 2018;67:1639–1647. doi: 10.1007/s11172-018-2271-8. DOI

Laun H.M., Gabriel C., Schmidt G. Primary and secondary normal stress differences of a magnetorheological fluid (MRF) up to magnetic flux densities of 1 T. J. Non-Newton. Fluid Mech. 2008;148:47–56. doi: 10.1016/j.jnnfm.2007.04.019. DOI

Poojary U.R., Hegde S., Gangadharan K.V. Experimental investigation on the effect of carbon nanotube additive on the field-induced viscoelastic properties of magnetorheological elastomer. J. Mater. Sci. 2018;53:4229–4241. doi: 10.1007/s10853-017-1883-y. DOI

Zhou G.Y. Shear properties of a magnetorheological elastomer. Smart Mater. Struct. 2003;12:139–146. doi: 10.1088/0964-1726/12/1/316. DOI

Shuib R.K., Pickering K.L. Investigation and modelling of damping mechanisms of magnetorheological elastomers. J. Appl. Polym. Sci. 2016;133:43247. doi: 10.1002/app.43247. DOI

Schoeck G. Internal friction due to precipitation. Phys. Status Solidi. 1969;32:651–658. doi: 10.1002/pssb.19690320216. DOI

Lavernia E.J., Perez R.J., Zhang J. Damping behavior of discontinuously reinforced al-alloy metal-matrix composites. Metall. Mater. Trans. A. 1995;26:2803–2818. doi: 10.1007/BF02669639. DOI

Aziz S.A.A., Ubaidillah, Mazlan S.A., Ismail N.I.N., Choi S.B. Implementation of functionalized multiwall carbon nanotubes on magnetorheological elastomer. J. Mater. Sci. 2018;53:10122–10134. doi: 10.1007/s10853-018-2315-3. DOI

Jolly M.R., Carlson J.D., Munoz B.C. A model of the behaviour of magnetorheological materials. Smart Mater. Struct. 1996;5:607–614. doi: 10.1088/0964-1726/5/5/009. DOI

Khimi S.R., Pickering K.L. The effect of silane coupling agent on the dynamic mechanical properties of iron sand/ natural rubber magnetorheological elastomers. Compos. Part B. 2016;90:115–125. doi: 10.1016/j.compositesb.2015.11.042. DOI

Moucka R., Sedlacik M., Cvek M. Dielectric properties of magnetorheological elastomers with different microstructure. Appl. Phys. Lett. 2018;122:112901. doi: 10.1063/1.5021750. DOI

Pickering K.L., Khimi S.R., Ilanko S. The effect of silane coupling agent on iron sand for use in magnetorheological elastomers Part 1: Surface chemical modification and characterization. Compos. Part A. 2015;68:377–386. doi: 10.1016/j.compositesa.2014.10.005. DOI

Sorokin V.V., Ecker E., Stepanov G.V., Shamonin M., Monkman G.J., Kramarenko E.Y., Khokhlov A.R. Experimental study of the magnetic field enhanced Payne effect in magnetorheological elastomers. Soft Matter. 2014;10:8765–8776. doi: 10.1039/C4SM01738B. PubMed DOI

Glavan G., Salamon P., Belyaeva I.A., Shamonin M., Drevensek-Olenik I. Tunable surface roughness and wettability of a soft magnetoactive elastomer. J. Appl. Polym. Sci. 2018;135:46221. doi: 10.1002/app.46221. DOI

Maman M., Ponsinet V. Wettability of magnetically susceptible surfaces. Langmuir. 1999;15:259–265. doi: 10.1021/la980379r. DOI

Lee S., Yim C., Kim W., Jeon S. Magnetorheological elastomer films with tunable wetting and adhesion properties. ACS Appl. Mater. Interfaces. 2015;7:19853–19856. doi: 10.1021/acsami.5b06273. PubMed DOI

Nagappan S., Ha C.S. Emerging trends in superhydrophobic surface based magnetic materials: Fabrications and their potential applications. J. Mater. Chem. A. 2015;3:3224–3251. doi: 10.1039/C4TA05078A. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...