Reprocessed magnetorheological elastomers with reduced carbon footprint and their piezoresistive properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RP/CPS/2022/007
Ministerstvo Školství, Mládeže a Tělovýchovy
IGA/CPS/2021/003
Tomas Bata University in Zlin
PubMed
35835843
PubMed Central
PMC9283494
DOI
10.1038/s41598-022-16129-y
PII: 10.1038/s41598-022-16129-y
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Despite the vast amount of studies based on magnetorheological elastomers (MREs), a very limited number of investigations have been initiated on their reprocessing. This paper presents a new type of recyclable MRE which is composed of thermoplastic polyurethane (TPU) and carbonyl iron particles (CI). The chosen TPU can be processed using injection moulding (IM), followed by several reprocessing cycles while preserving its properties. Numerous types of injection moulded and reprocessed MREs have been prepared for various particle concentrations. The effect of thermo-mechanical degradation on the recycled MREs has been investigated while simulating the reprocessing procedure. An apparent decrease in molecular weight was observed for all the examined matrices during the reprocessing cycles. These changes are attributed to the intermolecular bonding between the hydroxyl groups on the surface of the CI particles and the matrix which is studied in depth. The effect of reprocessing and the presence of magnetic particles is evaluated via tensile test, magnetorheology and piezoresistivity. These characterization techniques prove that the properties of our MREs are preserved at an acceptable level despite using 100% of recyclates while in real applications only up to 30% of recycled material is generally used.
Institute of Polymer Science Johannes Kepler University Linz Altenberger Straße 69 4040 Linz Austria
Zobrazit více v PubMed
Ahamed R, Choi SB, Ferdaus MM. A state of art on magneto-rheological materials and their potential applications. J. Intell. Mater. Syst. Struct. 2018;29(10):2051–2095. doi: 10.1177/1045389X18754350. DOI
Saleh TA, Fadillah G, Ciptawati E. Smart advanced responsive materials, synthesis methods and classifications: From lab to applications. J. Polym. Res. 2021;28:6. doi: 10.1007/s10965-020-02361-5. DOI
Carlson JD, Jolly MR. MR fluid, foam and elastomer devices. Mechatronics. 2000;10(4–5):555–569. doi: 10.1016/S0957-4158(99)00064-1. DOI
Sun S, Yang J, Du H, Zhang S, Yan T, Nakano M, et al. Development of magnetorheological elastomers-based tuned mass damper for building protection from seismic events. J. Intell. Mater. Syst. Struct. 2018;29(8):1777–1789. doi: 10.1177/1045389X17754265. DOI
Komatsuzaki T, Inoue T, Terashima O. Broadband vibration control of a structure by using a magnetorheological elastomer-based tuned dynamic absorber. Mechatronics. 2016;40:128–136. doi: 10.1016/j.mechatronics.2016.09.006. DOI
Cvek M, Moucka R, Sedlacik M, Babayan V, Pavlinek V. Enhancement of radio-absorbing properties and thermal conductivity of polysiloxane-based magnetorheological elastomers by the alignment of filler particles. Smart Mater. Struct. 2017;26:9.
Cvek M, Kutalkova E, Moucka R, Urbanek P, Sedlacik M. Lightweight, transparent piezoresistive sensors conceptualized as anisotropic magnetorheological elastomers: A durability study. Int. J. Mech. Sci. 2020;183:10. doi: 10.1016/j.ijmecsci.2020.105816. DOI
Fiorillo AS, Critello CD, Pullano SA. Theory, technology and applications of piezoresistive sensors: A review. Sens. Actuators A. 2018;281:156–175. doi: 10.1016/j.sna.2018.07.006. DOI
Behrooz M, Gordaninejad F. Three-dimensional study of a one-way, flexible magnetorheological elastomer-based micro fluid transport system. Smart Mater. Struct. 2016;25:9.
Behrooz M, Gordaninejad F. A flexible micro fluid transport system featuring magnetorheological elastomer. Smart Mater. Struct. 2016;25:2.
Murao S, Mitsufuji K, Hirata K, Miyasaka F. Coupled analysis by viscoelastic body with rigid body for design of MRE soft actuator. Electr. Eng. Jpn. 2018;203(3):30–38. doi: 10.1002/eej.23063. DOI
Fu Y, Yao JJ, Zhao HH, Zhao G, Wan ZS, Guo RZ. A muscle-like magnetorheological actuator based on bidisperse magnetic particles enhanced flexible alginate-gelatin sponges. Smart Mater. Struct. 2020;29:1.
Kelley CR, Kauffman JL. Towards wearable tremor suppression using dielectric elastomer stack actuators. Smart Mater. Struct. 2021;30:2. doi: 10.1088/1361-665X/abccdc. DOI
Stoll A, Mayer M, Monkman GJ, Shamonin M. Evaluation of highly compliant magneto-active elastomers with colossal magnetorheological response. J. Appl. Polym. Sci. 2014;131:2. doi: 10.1002/app.39793. DOI
Plachy T, Kutalkova E, Sedlacik M, Vesel A, Masar M, Kuritka I. Impact of corrosion process of carbonyl iron particles on magnetorheological behavior of their suspensions. J. Ind. Eng. Chem. 2018;66:362–369. doi: 10.1016/j.jiec.2018.06.002. DOI
Murin IV, Smirnov VM, Voronkov GP, Semenov VG, Povarov VG, Sinel'nikov BM. Structural-chemical transformations of alpha-Fe2O3 upon transport reduction. Solid State Ionics. 2000;133(3–4):203–210. doi: 10.1016/S0167-2738(00)00748-7. DOI
Cvek M, Mrlik M, Sevcik J, Sedlacik M. Tailoring performance, damping, and surface properties of magnetorheological elastomers via particle-grafting technology. Polymers. 2018;10:12. doi: 10.3390/polym10121411. PubMed DOI PMC
Perez LD, Zuluaga MA, Kyu T, Mark JE, Lopez BL. Preparation, characterization, and physical properties of multiwall carbon nanotube/elastomer composites. Polym. Eng. Sci. 2009;49(5):866–874. doi: 10.1002/pen.21247. DOI
Boczkowska A, Awietjan SF, Wroblewski R. Microstructure-property relationships of urethane magnetorheological elastomers. Smart Mater. Struct. 2007;16(5):1924–1930. doi: 10.1088/0964-1726/16/5/049. DOI
Ju BX, Tang R, Zhang DY, Yang BL, Yu M, Liao CR, et al. Dynamic mechanical properties of magnetorheological elastomers based on polyurethane matrix. Polym. Compos. 2016;37(5):1587–1595. doi: 10.1002/pc.23330. DOI
Grigorescu RM, Ghioca P, Iancu L, David ME, Andrei ER, Filipescu MI, et al. Development of thermoplastic composites based on recycled polypropylene and waste printed circuit boards. Waste Manage. 2020;118:391–401. doi: 10.1016/j.wasman.2020.08.050. PubMed DOI
Datta S, Naskar K, Bhardwaj YK, Sabharwal S. A study on dynamic rheological characterisation of electron beam crosslinked high vinyl styrene butadiene styrene block copolymer. Polym. Bull. 2011;66(5):637–647. doi: 10.1007/s00289-010-0359-x. DOI
Wolfel B, Seefried A, Allen V, Kaschta J, Holmes C, Schubert DW. Recycling and reprocessing of thermoplastic polyurethane materials towards nonwoven processing. Polymers. 2020;12(9):13. doi: 10.3390/polym12091917. PubMed DOI PMC
Vatandoost H, Rakheja S, Sedaghati R. Effects of iron particles' volume fraction on compression mode properties of magnetorheological elastomers. J. Magn. Magn. Mater. 2021;522:14. doi: 10.1016/j.jmmm.2020.167552. DOI
Winger J, Schumann M, Kupka A, Odenbach S. Influence of the particle size on the magnetorheological effect of magnetorheological elastomers. J. Magn. Magn. Mater. 2019;481:176–182. doi: 10.1016/j.jmmm.2019.03.027. DOI
Kwon SH, An JS, Choi SY, Chung KH, Choi HJ. Poly(glycidyl methacrylate) coated soft-magnetic carbonyl iron/silicone rubber composite elastomer and its magnetorheology. Macromol. Res. 2019;27(5):448–453. doi: 10.1007/s13233-019-7065-9. DOI
Kwon SH, Lee CJ, Choi HJ, Chung KH, Jung JH. Viscoelastic and mechanical behaviors of magneto-rheological carbonyl iron/natural rubber composites with magnetic iron oxide nanoparticle. Smart Mater. Struct. 2019;28:4.
Sorokin VV, Ecker E, Stepanov GV, Shamonin M, Monkman GJ, Kramarenko EY, et al. Experimental study of the magnetic field enhanced Payne effect in magnetorheological elastomers. Soft Matter. 2014;10(43):8765–8776. doi: 10.1039/C4SM01738B. PubMed DOI
Fuensanta M, Martin-Martinez JM. Structural and viscoelastic properties of thermoplastic polyurethanes containing mixed soft segments with potential application as pressure sensitive adhesives. Polymers. 2021;13:18. doi: 10.3390/polym13183097. PubMed DOI PMC
Albozahid M, Naji HZ, Alobad ZK, Saiani A. TPU nanocomposites tailored by graphene nanoplatelets: The investigation of dispersion approaches and annealing treatment on thermal and mechanical properties. Polym. Bull. 2021;1:1–10.
Luo Y, Xie YH, Geng W, Dai GF, Sheng XX, Xie DL, et al. Fabrication of thermoplastic polyurethane with functionalized MXene towards high mechanical strength, flame-retardant, and smoke suppression properties. J. Colloid Interface Sci. 2022;606:223–235. doi: 10.1016/j.jcis.2021.08.025. PubMed DOI
Bozyel I, Keser YI, Gokcen D. Triple mode and multi-purpose flexible sensor fabrication based on carbon black and thermoplastic polyurethane composite with propolis. Sens. Actuators A. 2021;332:17. doi: 10.1016/j.sna.2021.113056. DOI
Wu JK, Gong XG, Chen L, Xia HS, Hu ZG. Preparation and characterization of isotropic polyurethane magnetorheological elastomer through in situ polymerization. J. Appl. Polym. Sci. 2009;114(2):901–910. doi: 10.1002/app.30563. DOI
Wei B, Gong XL, Jiang WQ. Influence of polyurethane properties on mechanical performances of magnetorheological elastomers. J. Appl. Polym. Sci. 2010;116(2):771–778.
Cookson JW. Theory of the Piezo-resistive effect. Phys. Rev. 2022;1:156–175.
Li W, Jin X, Han X, Li YR, Wang WY, Lin T, et al. Synergy of porous structure and microstructure in piezoresistive material for high-performance and flexible pressure sensors. ACS Appl. Mater. Interfaces. 2021;13(16):19211–19220. doi: 10.1021/acsami.0c22938. PubMed DOI
Georgopoulou A, Michel S, Vanderborght B, Clemens F. Piezoresistive sensor fiber composites based on silicone elastomers for the monitoring of the position of a robot arm. Sens. Actuators A. 2021;318:11. doi: 10.1016/j.sna.2020.112433. DOI
Zhang YH, Xia ZB, Huang H, Chen HQ. A degradation study of waterborne polyurethane based on TDI. Polym. Testing. 2009;28(3):264–269. doi: 10.1016/j.polymertesting.2008.12.011. DOI
Hentschel T, Munstedt H. Kinetics of the molar mass decrease in a polyurethane melt: A rheological study. Polymer. 2001;42(7):3195–3203. doi: 10.1016/S0032-3861(00)00489-4. DOI
Cvek M, Kracalik M, Sedlacik M, Mrlik M, Sedlarik V. Reprocessing of injection-molded magnetorheological elastomers based on TPE matrix. Composites B. 2019;172:253–261. doi: 10.1016/j.compositesb.2019.05.090. DOI
Lopez-Pamies O. An exact result for the macroscopic response of particle-reinforced neo-Hookean solids. J. Appl. Mech. Trans. ASME. 2010;77:2. doi: 10.1115/1.3197444. DOI
Schrodner M, Pflug G. Magnetomechanical properties of composites and fibers made from thermoplastic elastomers (TPE) and carbonyl iron powder (CIP) J. Magn. Magn. Mater. 2018;454:258–263. doi: 10.1016/j.jmmm.2018.01.053. DOI
Takahara A, Coury AJ, Hergenrother RW, Cooper SL. Effect of soft segment chemistry on the biostability of segmented polyurethanes. I. In vitro oxidation. J. Biomed. Mater. Res. 1991;25(3):341–356. doi: 10.1002/jbm.820250306. PubMed DOI
Grigoryeva OP, Fainleb AM, Shumskii VF, Vilenskii VA, Kozak NV, Babkina NV. The effect of multi-reprocessing on the structure and characteristics of thermoplastic elastomers based on recycled polymers. Polym. Sci. A. 2009;51(2):216–225. doi: 10.1134/S0965545X09020114. DOI
Cvek M, Mrlik M, Ilcikova M, Mosnacek J, Munster L, Pavlinek V. Synthesis of silicone elastomers containing silyl-based polymer grafted carbonyl iron particles: An efficient way to improve magnetorheological, damping, and sensing performances. Macromolecules. 2017;50(5):2189–2200. doi: 10.1021/acs.macromol.6b02041. DOI
Rabindranath, R. & Bose, H., editors. On the mobility of iron particles embedded in elastomeric silicone matrix. 13th International Conference on Electrorheological Fluids and Magnetorheological Suspensions (ERMR) (2012).
Sulkowski WW, Danch A, Moczynski M, Radon A, Sulkowska A, Borek J. Thermogravimetric study of rubber waste-polyurethane composites. J. Therm. Anal. Calorim. 2004;78(3):905–921. doi: 10.1007/s10973-005-0457-0. DOI
Dwan'isa JPL, Mohanty AK, Misra M, Drzal LT, Kazemizadeh M. Novel soy oil based polyurethane composites: Fabrication and dynamic mechanical properties evaluation. J. Mater. Sci. 2004;39(5):1887–1890. doi: 10.1023/B:JMSC.0000016211.93689.89. DOI
Barnes HA. A review of the rheology of filled viscoelastic systems. Rheol. Rev. 2003;1:1–36.
Rueda MM, Auscher MC, Fulchiron R, Perie T, Martin G, Sonntag P, et al. Rheology and applications of highly filled polymers: A review of current understanding. Prog. Polym. Sci. 2017;66:22–53. doi: 10.1016/j.progpolymsci.2016.12.007. DOI
Chung DDL. A critical review of piezoresistivity and its application in electrical-resistance-based strain sensing. J. Mater. Sci. 2020;55(32):15367–15396. doi: 10.1007/s10853-020-05099-z. DOI