Natural Weathering Effects on the Mechanical, Rheological, and Morphological Properties of Magnetorheological Elastomer (MRE) in Tropical Climate
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
Hibah Non APBN 2022 LPPM
Sebelas Maret University
UTM Fundamental Research (Vot. No. 22H14)
University of Technology Malaysia
DKRVO [RP/CPS/2022/007]
Tomas Bata University in Zlín
PubMed
36077328
PubMed Central
PMC9456540
DOI
10.3390/ijms23179929
PII: ijms23179929
Knihovny.cz E-resources
- Keywords
- durability, environmental stress, magnetorheological elastomer, natural weathering, ozone microcracking, photo-oxidation, photodegradation, ultraviolet,
- MeSH
- Elastomers * MeSH
- Weather MeSH
- Rheology MeSH
- Silicone Elastomers MeSH
- Tropical Climate * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Elastomers * MeSH
- Silicone Elastomers MeSH
Magnetorheological elastomer (MRE) materials have the potential to be used in a wide range of applications that require long-term service in hostile environments. These widespread applications will result in the emergence of MRE-specific durability issues, where durability refers to performance under in-service environmental conditions. In response, the outdoor tropical climatic environment, combined with the effects of weathering, will be the primary focus of this paper, specifically the photodegradation of the MRE. In this study, MRE made of silicone rubber (SR) and 70 wt% micron-sized carbonyl iron particles (CIP) were prepared and subjected to mechanical and rheological testing to evaluate the effects under natural weathering. Magnetorheological elastomer samples were exposed to the natural weathering conditions of a tropical climate in Kuala Lumpur, Malaysia, for 30 days. To obtain a comprehensive view of MRE degradation during natural weathering, mechanical testing, rheology, and morphological evaluation were all performed. The mechanical and rheological properties test results revealed that after 30 days of exposure and known meteorological parameters, Young's modulus and storage modulus increased, while elongation at break decreased. The degradation processes of MRE during weathering, which are responsible for their undesirable change, were given special attention. With the help of morphological evidence, the relationship between these phenomena and the viscoelastic properties of MRE was comprehensively defined and discussed.
See more in PubMed
Johari M.A.F., Mazlan S.A., Ubaidillah, Harjana, Aziz S.A.A., Nordin N.A., Johari N., Nazmi N. An Overview of Durability Evaluations of Elastomer-Based Magnetorheological Materials. IEEE Access. 2020;8:134536–134552. doi: 10.1109/ACCESS.2020.3010867. DOI
Nam T.H., Petríková I., Marvalová B. Experimental characterization and viscoelastic modeling of isotropic and anisotropic magnetorheological elastomers. Polym. Test. 2020;81:106272. doi: 10.1016/j.polymertesting.2019.106272. DOI
Garcia-Gonzalez D., Moreno M., Valencia L., Arias A., Velasco D. Influence of elastomeric matrix and particle volume fraction on the mechanical response of magneto-active polymers. Compos. Part B Eng. 2021;215:108796. doi: 10.1016/j.compositesb.2021.108796. DOI
Johari M.A.F., Mazlan S.A., Nordin N.A., Ubaidillah U., Aziz S.A.A., Nazmi N., Johari N., Choi S.-B. The Effect of Microparticles on the Storage Modulus and Durability Behavior of Magnetorheological Elastomer. Micromachines. 2021;12:948. doi: 10.3390/mi12080948. PubMed DOI PMC
Munteanu A., Ronzova A., Kutalkova E., Drohsler P., Moucka R., Kracalik M., Bilek O., Mazlan S.A., Sedlacik M. Reprocessed magnetorheological elastomers with reduced carbon footprint and their piezoresistive properties. Sci. Rep. 2022;12:12041. doi: 10.1038/s41598-022-16129-y. PubMed DOI PMC
Cvek M., Kracalik M., Sedlacik M., Mrlik M., Sedlarik V. Reprocessing of injection-molded magnetorheological elastomers based on TPE matrix. Compos. Part B Eng. 2019;172:253–261. doi: 10.1016/j.compositesb.2019.05.090. DOI
Lejon J., Kari L. Measurements on the Temperature, Dynamic Strain Amplitude and Magnetic Field Strength Dependence of the Dynamic Shear Modulus of Magnetosensitive Elastomers in a Wide Frequency Range. J. Vib. Acoust. 2013;135:064506. doi: 10.1115/1.4025063. DOI
Ruellan B., Le Cam J.-B., Jeanneau I., Canévet F., Mortier F., Robin E. Fatigue of natural rubber under different temperatures. Int. J. Fatigue. 2019;124:544–557. doi: 10.1016/j.ijfatigue.2018.10.009. DOI
Lian C., Lee K.-H., Lee C.-H. Effect of Temperature and Relative Humidity on Friction and Wear Properties of Silicone-Based Magnetorheological Elastomer. Tribol. Trans. 2017;61:238–246. doi: 10.1080/10402004.2017.1306636. DOI
Rashid R.Z.A., Yunus N.A., Mazlan S.A., Johari N., Aziz S.A.A., Nordin N.A., Khairi M.H.A., Johari M.A.F. Temperature Dependent on Mechanical and Rheological Properties of EPDM-Based Magnetorheological Elastomers Using Silica Nanoparticles. Materials. 2022;15:2556. doi: 10.3390/ma15072556. PubMed DOI PMC
Zhang W., Gong X.L., Jiang W.Q., Fan Y.C. Investigation of the durability of anisotropic magnetorheological elastomers based on mixed rubber. Smart Mater. Struct. 2010;19:085008. doi: 10.1088/0964-1726/19/8/085008. DOI
Kashi S., Varley R., De Souza M., Al-Assafi S., Di Pietro A., de Lavigne C., Fox B. Mechanical, Thermal, and Morphological Behavior of Silicone Rubber during Accelerated Aging. Polym. Technol. Eng. 2018;57:1687–1696. doi: 10.1080/03602559.2017.1419487. DOI
Stevenson A. On the durability of rubber/metal bonds in seawater. Int. J. Adhes. Adhes. 1985;5:81–91. doi: 10.1016/0143-7496(85)90020-X. DOI
Aziz S.A.A., Mazlan S.A., Ubaidillah U., Mohamad N., Choi S.-B., Aziz M.A.C., Johari M.A.F., Homma K. Thermal Aging Rheological Behavior of Magnetorheological Elastomers Based on Silicone Rubber. Int. J. Mol. Sci. 2020;21:9007. doi: 10.3390/ijms21239007. PubMed DOI PMC
Mohamed A.S.Y. Smart Materials Innovative Technologies in architecture; Towards Innovative design paradigm. Energy Procedia. 2017;115:139–154. doi: 10.1016/j.egypro.2017.05.014. DOI
Salim M.S., Ariawan D., Rasyid M.F.A., Taib R.M., Thirmizir M.Z.A., Ishak Z.A.M. Accelerated Weathering and Water Absorption Behavior of Kenaf Fiber Reinforced Acrylic Based Polyester Composites. Front. Mater. 2020;7:26. doi: 10.3389/fmats.2020.00026. DOI
Wibowo W., Lenggana B.W., Ubaidillah U., Ariawan D., Imaduddin F., Mazlan S.A., Choi S.-B. Declining Performance of Silicone-Based Magnetorheological Elastomers after Accelerated Weathering. Materials. 2021;14:6389. doi: 10.3390/ma14216389. PubMed DOI PMC
Nagai Y., Ogawa T., Nishimoto Y., Ohishi F. Analysis of weathering of a thermoplastic polyester elastomer II. Factors affecting weathering of a polyether–polyester elastomer. Polym. Degrad. Stab. 1999;65:217–224. doi: 10.1016/S0141-3910(99)00007-5. DOI
Chakraborty R., Reddy B.S. Studies on high temperature vulcanized silicone rubber insulators under arid climatic aging. IEEE Trans. Dielectr. Electr. Insul. 2017;24:1751–1760. doi: 10.1109/TDEI.2017.006247. DOI
Woo C.S., Choi S.S., Lee S.B., Kim H.S. Useful Lifetime Prediction of Rubber Components Using Accelerated Testing. IEEE Trans. Reliab. 2010;59:11–17. doi: 10.1109/TR.2010.2042103. DOI
Ismail H., Awang M. Natural Weathering of Polypropylene and Waste Tire Dust (PP/WTD) Blends. J. Polym. Environ. 2008;16:147–153. doi: 10.1007/s10924-008-0087-6. DOI
Ismail H., Osman H., Mariatti M. Effects of Natural Weathering on Properties of Recycled Newspaper-filled Polypropylene (PP)/Natural Rubber (NR) Composites. Polym. Technol. Eng. 2008;47:697–707. doi: 10.1080/03602550802129650. DOI
Noriman N.Z., Ismail H., A.Rashid A. Natural Weathering Test of Styrene Butadiene Rubber and Recycled Acrylonitrile Butadiene Rubber (SBR/NBRr) Blends. Polym. Technol. Eng. 2010;49:731–741. doi: 10.1080/03602551003664552. DOI
Naddeo C., Guadagno L., Vittoria V. Photooxidation of spherilene linear low-density polyethylene films subjected to environmental weathering. 1. Changes in mechanical properties. Polym. Degrad. Stab. 2004;85:1009–1013. doi: 10.1016/j.polymdegradstab.2003.04.005. DOI
Feldman D. Polymer Weathering: Photo-Oxidation. J. Polym. Environ. 2002;10:163–173. doi: 10.1023/A:1021148205366. DOI
Ulu K.N., Huneau B., Le Gac P.-Y., Verron E. Fatigue resistance of natural rubber in seawater with comparison to air. Int. J. Fatigue. 2016;88:247–256. doi: 10.1016/j.ijfatigue.2016.03.033. DOI
Gu H. Degradation of glass fibre/polyester composites after ultraviolet radiation. Mater. Des. 2008;29:1476–1479. doi: 10.1016/j.matdes.2007.07.010. DOI
Kruželák J., Hudec I., Dosoudil R. Influence of thermo-oxidative and ozone ageing on the properties of elastomeric magnetic composites. Polym. Degrad. Stab. 2012;97:921–928. doi: 10.1016/j.polymdegradstab.2012.03.025. DOI
Johari M.A.F., Mazlan S.A., Nasef M.M., Ubaidillah U., Nordin N.A., Aziz S.A.A., Johari N., Nazmi N. Microstructural behavior of magnetorheological elastomer undergoing durability evaluation by stress relaxation. Sci. Rep. 2021;11:10936. doi: 10.1038/s41598-021-90484-0. PubMed DOI PMC