Experimental Infection of Sand Flies by Massilia Virus and Viral Transmission by Co-Feeding on Sugar Meal
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30970559
PubMed Central
PMC6520868
DOI
10.3390/v11040332
PII: v11040332
Knihovny.cz E-zdroje
- Klíčová slova
- Lutzomyia, Phenuiviridae, Phlebotomus, Phlebovirus, Sergentomyia, Toscana virus, sand fly, virus transmission,
- MeSH
- cukry MeSH
- fomity virologie MeSH
- hmyz - vektory fyziologie virologie MeSH
- horečka pappataci přenos MeSH
- jídla MeSH
- kontaminace potravin * MeSH
- Phlebovirus růst a vývoj izolace a purifikace MeSH
- Psychodidae fyziologie virologie MeSH
- stravovací zvyklosti * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cukry MeSH
Background: Massilia virus (MASV) is a phlebovirus isolated from Phlebotomus perniciosus in various regions of southwestern Europe. It is closely related to human pathogens such as Toscana virus and sandfly fever Naples virus. The natural cycle of phleboviruses is poorly understood. Indeed, experimental studies demonstrate that transovarial and sexual transmission are not efficient enough for the maintenance of the virus in nature and to date there is no convincing evidence that a species of vertebrates is the reservoir of the virus. Here, we studied various transmission routes of MASV taking advantage of experimental colonies representing different species of sand flies. Methodology/Principal findings: In P. perniciosus, four sources of infection were compared: (i) Virus-seeded larval food to the first instar larvae (L1), or (ii) to the fourth instar larvae (L4), (iii) virus-seeded blood meal to adult females, and (iv) virus-seeded sugar meal to adults of both sexes. From 875 adults emerged from infected L1 and L4, only three were positive. In females infected by bloodmeal the infection rate was high before defecation, then it decreased drastically; MASV RNA was detected in only 5 out of 27 post-defecation. Surprisingly, the most efficient route of infection was observed after intake of virus-seeded sugar meal: 72% of females (79/110) and 52% of males (51/99) were found to be MASV RNA-positive. In addition, MASV-infected sandflies regurgitated virus particules into the sugar drop and MASV RNA was detectable in this drop for at least 24 h after regurgitation. MASV RNA was detected in about one third of the P. perniciosus exposed to this sugar drop contaminated by regurgitation. Sugar meal infection was also tested with six other species of sand flies. In males, there were no significant differences in infection rates when compared to P. perniciosus. In females, most species tested showed high infection rate at the beginning but then significant gradual decrease in infection rate during the experiment. Conclusions/Significance: We present the first description of arboviral infection of a dipteran vector using sugar meal. In all seven sand fly species tested, MASV was detected for two weeks post-infection. Our results showed that MASV can be transmitted between P. perniciosus either through co-feeding or via an infected sugar source such as plant sap. These newly described routes of horizontal transmission may play an important role in the circulation of phleboviruses in nature.
Zobrazit více v PubMed
Killick-Kendrick R. The biology and control of phlebotomine sand flies. Clin. Dermatol. 1999;17:279–289. doi: 10.1016/S0738-081X(99)00046-2. PubMed DOI
Maroli M., Feliciangeli M.D., Bichaud L., Charrel R.N., Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med. Vet. Entomol. 2013;27:123–147. doi: 10.1111/j.1365-2915.2012.01034.x. PubMed DOI
Alkan C., Bichaud L., de Lamballerie X., Alten B., Gould E.A., Charrel R.N. Sandfly-borne phleboviruses of Eurasia and Africa: Epidemiology, genetic diversity, geographic range, control measures. Antivir. Res. 2013;100:54–74. doi: 10.1016/j.antiviral.2013.07.005. PubMed DOI
Maes P., Adkins S., Alkhovsky S.V., Avšič-Županc T., Ballinger M.J., Bente D.A., Beer M., Bergeron E., Blair C.D., Briese T., et al. Taxonomy of the order Bunyavirales: Second update 2018. Arch. Virol. 2019;164:927–941. doi: 10.1007/s00705-018-04127-3. PubMed DOI PMC
Hubalek Z., Rudolf I. Tick-borne viruses in Europe. Parasitol. Res. 2012;111:9–36. doi: 10.1007/s00436-012-2910-1. PubMed DOI
Horne K.M., Vanlandingham D.L. Bunyavirus-vector interactions. Viruses. 2014;6:4373–4397. doi: 10.3390/v6114373. PubMed DOI PMC
Charrel R.N., Gallian P., Navarro-Mari J.M., Nicoletti L., Papa A., Sanchez-Seco M.P., Tenorio A., de Lamballerie X. Emergence of Toscana virus in Europe. Emerg. Infect. Dis. 2005;11:1657–1663. doi: 10.3201/eid1111.050869. PubMed DOI PMC
Charrel R.N., Bichaud L., de Lamballerie X. Emergence of Toscana virus in the mediterranean area. World J. Virol. 2012;1:135–141. doi: 10.5501/wjv.v1.i5.135. PubMed DOI PMC
Es-sette N., Ajaoud M., Anga L., Mellouki F., Lemrani M. Toscana virus isolated from sandflies, Morocco. Parasit. Vectors. 2015;8:205. doi: 10.1186/s13071-015-0826-1. PubMed DOI PMC
Charrel R.N., Izri A., Temmam S., de Lamballerie X., Parola P. Toscana virus RNA in Sergentomyia minuta files. Emerg. Infect. Dis. 2006;12:1299–1300. doi: 10.3201/eid1708.060345. PubMed DOI PMC
Ergunay K., Kasap O.E., Orsten S., Oter K., Gunay F., Yoldar A.Z., Dincer E., Ozkul A. Phlebovirus and Leishmania detection in sandflies from eastern Thrace and northern Cyprus. Parasit. Vectors. 2014;7:1–13. doi: 10.1186/s13071-014-0575-6. PubMed DOI PMC
Ayhan N., Alten B., Ivovic V., Martinkovic F., Kasap O.E., Ozbel Y., de Lamballerie X., Charrel R.N. Cocirculation of Two Lineages of Toscana Virus in Croatia. Front. Public Health. 2017;12:336. doi: 10.3389/fpubh.2017.00336. PubMed DOI PMC
Es-sette N., Ajaoud M., Bichaud L., Hamdi S., Mellouki F., Charrel R.N., Lemrani M. Phlebotomus sergenti a common vector of Leishmania tropica and Toscana virus in Morocco. J. Vector Borne Dis. 2014;51:86. PubMed
Charrel R.N., Moureau G., Temmam S., Izri A., Marty P., Parola P., da Rosa A.T., Tesh R.B., de Lamballerie X. Massilia virus, a novel Phlebovirus (Bunyaviridae) isolated from sandflies in the Mediterranean. Vector Borne Zoonotic Dis. 2009;9:519–530. doi: 10.1089/vbz.2008.0131. PubMed DOI PMC
Tesh R.B., Chaniotis B.N. Transovarial transmission of viruses by phlebotomine sandflies. Ann. N. Y. Acad. Sci. 1975;266:125–134. doi: 10.1111/j.1749-6632.1975.tb35093.x. PubMed DOI
Tesh R.B., Modi G.B. Maintenance of Toscana virus in Phlebotomus perniciosus by vertical transmission. Am. J. Trop. Med. Hyg. 1987;36:189–193. doi: 10.4269/ajtmh.1987.36.189. PubMed DOI
Tesh R.B., Lubroth J., Guzman H. Simulation of arbovirus overwintering: Survival of Toscana virus (Bunyaviridae: Phlebovirus) in its natural sand fly vector Phlebotomus perniciosus. Am. J. Trop. Med. Hyg. 1992;47:574–581. doi: 10.4269/ajtmh.1992.47.574. PubMed DOI
Maroli M., Ciufolini M.G., Verani P. Vertical transmission of Toscana virus in the sandfly, Phlebotomus perniciosus, via the second gonotrophic cycle. Med. Vet. Entomol. 1993;7:283–286. doi: 10.1111/j.1365-2915.1993.tb00689.x. PubMed DOI
Labuda M., Nuttall P.A., Kožuch O., Elečková E., Williams T., Žuffová E., Sabo A. Non-viraemic transmission of tick-borne encephalitis virus: A mechanism for arbovirus survival in nature. Experientia. 1993;49:802–805. doi: 10.1007/BF01923553. PubMed DOI
Higgs S., Schneider B.S., Vanlandingham D.L., Klingler K.A., Gould E.A. Nonviremic transmission of West Nile virus. Proc. Natl. Acad. Sci. USA. 2005;102:8871–8874. doi: 10.1073/pnas.0503835102. PubMed DOI PMC
Mead D.G., Ramberg F.B., Besselsen D.G., Maré C.J. Transmission of vesicular stomatitis virus from infected to noninfected black flies co-feeding on nonviremic deer mice. Science. 2000;287:485–487. doi: 10.1126/science.287.5452.485. PubMed DOI
Volf P., Volfova V. Establishment and maintenance of sand fly colonies. J. Vector Ecol. 2011;36:1–9. doi: 10.1111/j.1948-7134.2011.00106.x. PubMed DOI
Alwassouf S., Maia C., Ayhan N., Coimbra M., Cristovao J.M., Richet H., Bichaud L., Campino L., Charrel R.N. Neutralization-based seroprevalence of Toscana virus and sandfly fever Sicilian virus in dogs and cats from Portugal. J. Gen. Virol. 2016;97:2816–2823. doi: 10.1099/jgv.0.000592. PubMed DOI
Dincer E., Gargari S., Ozkul A., Ergunay K. Potential animal reservoirs of Toscana virus and coinfections with Leishmania infantum in Turkey. Am. J. Trop. Med. Hyg. 2015;92:690–697. doi: 10.4269/ajtmh.14-0322. PubMed DOI PMC
Möckel N., Gisder S., Genersch E. Horizontal transmission of deformed wing virus: Pathological consequences in adult bees (Apis mellifera) depend on the transmission route. J. Gen. Virol. 2011;92:370–377. doi: 10.1099/vir.0.025940-0. PubMed DOI
Ferreira Á.G., Naylor H., Esteves S.S., Pais I.S., Martins N.E., Teixeira L. The Toll-dorsal pathway is required for resistance to viral oral infection in Drosophila. PLoS Pathog. 2014;10:e1004507. doi: 10.1371/journal.ppat.1004507. PubMed DOI PMC
Stevanovic A.L., Johnson K.N. Infectivity of Drosophila C virus following oral delivery in Drosophila larvae. J. Gen. Virol. 2015;96:1490–1496. doi: 10.1099/vir.0.000068. PubMed DOI
Hardy J.L., Houk E.J., Kramer L.D., Reeves W.C. Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annu. Rev. Entomol. 1983;28:229–262. doi: 10.1146/annurev.en.28.010183.001305. PubMed DOI
Franz A.W., Kantor A.M., Passarelli A.L., Clem R.J. Tissue barriers to arbovirus infection in mosquitoes. Viruses. 2015;7:3741–3767. doi: 10.3390/v7072795. PubMed DOI PMC
Sudeep A.B., Mandar P., Ghodke Y.K., George R.P., Gokhale M.D. Vector competence of two Indian populations of Culex quinquefasciatus (Diptera: Culicidae) mosquitoes to three West Nile virus strains. J. Vector Borne Dis. 2015;52:185. PubMed
Diallo M., Thonnon J., Fontenille D. Vertical transmission of the yellow fever virus by Aedes aegypti (Diptera, Culicidae): Dynamics of infection in F1 adult progeny of orally infected females. Am. J. Trop. Med. Hyg. 2000;62:151–156. doi: 10.4269/ajtmh.2000.62.151. PubMed DOI
Wasinpiyamongkol L., Thongrungkiat S., Jirakanjanakit N., Apiwathnasorn C. Susceptibility and transovarial transmission of dengue virus in Aedes aegypti: A preliminary study of morphological variations. Southeast Asian J. Trop. Med. Public Health. 2003;34:131–135. PubMed
Castro M.G.D., Nogueira R.M.R., Schatzmayr H.G., Miagostovich M.P., Lourenço-de-Oliveira R. Dengue virus detection by using reverse transcription-polymerase chain reaction in saliva and progeny of experimentally infected Aedes albopictus from Brazil. Memórias Inst. Oswaldo Cruz. 2004;99:809–814. doi: 10.1590/S0074-02762004000800005. PubMed DOI
Saiyasombat R., Bolling B.G., Brault A.C., Bartholomay L.C., Blitvich B.J. Evidence of efficient transovarial transmission of Culex flavivirus by Culex pipiens (Diptera: Culicidae) J. Med. Entomol. 2011;48:1031–1038. doi: 10.1603/ME11043. PubMed DOI
Volf P., Kiewegová A., Nemec A. Bacterial colonisation in the gut of Phlebotomus duboscqi (Diptera: Psychodidae): Transtadial passage and the role of female diet. Folia Parasitol. 2002;49:73–77. doi: 10.14411/fp.2002.014. PubMed DOI
Chavshin A.R., Oshaghi M.A., Vatandoost H., Yakhchali B., Zarenejad F., Terenius O. Malpighian tubules are important determinants of Pseudomonas transstadial transmission and longtime persistence in Anopheles stephensi. Parasit. Vector. 2015;8:36. doi: 10.1186/s13071-015-0635-6. PubMed DOI PMC
Hakim R.S., Baldwin K., Smagghe G. Regulation of midgut growth, development, and metamorphosis. Ann. Rev. Entomol. 2010;55:593–608. doi: 10.1146/annurev-ento-112408-085450. PubMed DOI
Fernandes K.M., Neves C.A., Serrão J.E., Martins G.F. Aedes aegypti midgut remodeling during metamorphosis. Parasitol. Int. 2014;63:506–512. doi: 10.1016/j.parint.2014.01.004. PubMed DOI
Chavshin A.R., Oshaghi M.A., Vatandoost H., Yakhchali B., Raeisi A., Zarenejad F. Escherichia coli expressing a green fluorescent protein (GFP) in Anopheles stephensi: A preliminary model for paratransgenesis. Symbiosis. 2013;60:17–24. doi: 10.1007/s13199-013-0231-5. DOI
Terra W.R. Evolution of digestive systems of insects. Ann. Rev. Entomol. 1990;35:181–200. doi: 10.1146/annurev.en.35.010190.001145. DOI
Peters W. Peritrophic Membranes. Volume 2. Springer Press; Berlin/Heidelberg, Germany: 1992. pp. 1–238.
Lehane M.J. Peritrophic matrix structure and function. Ann. Rev. Entomol. 1997;42:525–550. doi: 10.1146/annurev.ento.42.1.525. PubMed DOI
Pruzinova K., Sadlova J., Seblova V., Homola M., Votypka J., Volf P. Comparison of bloodmeal digestion and the peritrophic matrix in four sand fly species differing in susceptibility to Leishmania donovani. PLoS ONE. 2015;10:e0128203. doi: 10.1371/journal.pone.0128203. PubMed DOI PMC
Xi Z., Ramirez J.L., Dimopoulos G. The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog. 2008;4:e1000098. doi: 10.1371/journal.ppat.1000098. PubMed DOI PMC
Ramirez J.L., Souza-Neto J., Cosme R.T., Rovira J., Ortiz A., Pascale J.M., Dimopoulos G. Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Negl. Trop. Dis. 2012;6:e1561. doi: 10.1371/journal.pntd.0001561. PubMed DOI PMC
Ramirez J.L., Short S.M., Bahia A.C., Saraiva R.G., Dong Y., Kang S., Tripathi A., Mlambo G., Dimopoulos G. Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities. PLoS Pathog. 2014;10:e1004398. doi: 10.1371/journal.ppat.1004398. PubMed DOI PMC
Tang Y., Ward R.D. Sugar feeding and fluid destination control in the phlebotomine sandfly Lutzomyia longipalpis (Diptera: Psychodidae) Med. Vet. Entomol. 1998;12:13–19. doi: 10.1046/j.1365-2915.1998.00063.x. PubMed DOI
Van den Hurk A.F., Johnson P.H., Hall-Mendelin S., Northill J.A., Simmons R.J., Jansen C.C., Frances S.P., Smith G.A., Ritchie S.A. Expectoration of flaviviruses during sugar feeding by mosquitoes (Diptera: Culicidae) J. Med. Entomol. 2007;44:845–850. doi: 10.1603/0022-2585(2007)44[845:EOFDSF]2.0.CO;2. PubMed DOI
Moore J.S., Kelly T.B., Killick-Kendrick R., Killick-Kendrick M., Wallbanks K.R., Molyneux D.H. Honeydew sugars in wild-caught Phlebotomus ariasi detected by high performance liquid chromatography (HPLC) and gas chromatography (GC) Med. Vet. Entomol. 1987;1:427–434. doi: 10.1111/j.1365-2915.1987.tb00373.x. PubMed DOI
Molyneux D.H., Moore J., Maroli M. Sugars in sandflies. Parassitologia. 1991;33:431–436. PubMed