The genome of cowpea (Vigna unguiculata [L.] Walp.)
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
31017340
PubMed Central
PMC6852540
DOI
10.1111/tpj.14349
Knihovny.cz E-zdroje
- Klíčová slova
- Phaseolus vulgaris, Vigna unguiculata, chromosomal inversion, cowpea, domestication, genome annotation, genome evolution, genome size, legumes, next-generation sequencing, repetitive elements,
- MeSH
- chromozomy rostlin genetika MeSH
- délka genomu genetika MeSH
- DNA rostlinná chemie genetika MeSH
- fazol genetika MeSH
- genom rostlinný genetika MeSH
- mapování chromozomů MeSH
- retroelementy genetika MeSH
- rostlinné geny genetika MeSH
- sekvenční analýza DNA metody MeSH
- syntenie MeSH
- vigna genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- DNA rostlinná MeSH
- retroelementy MeSH
Cowpea (Vigna unguiculata [L.] Walp.) is a major crop for worldwide food and nutritional security, especially in sub-Saharan Africa, that is resilient to hot and drought-prone environments. An assembly of the single-haplotype inbred genome of cowpea IT97K-499-35 was developed by exploiting the synergies between single-molecule real-time sequencing, optical and genetic mapping, and an assembly reconciliation algorithm. A total of 519 Mb is included in the assembled sequences. Nearly half of the assembled sequence is composed of repetitive elements, which are enriched within recombination-poor pericentromeric regions. A comparative analysis of these elements suggests that genome size differences between Vigna species are mainly attributable to changes in the amount of Gypsy retrotransposons. Conversely, genes are more abundant in more distal, high-recombination regions of the chromosomes; there appears to be more duplication of genes within the NBS-LRR and the SAUR-like auxin superfamilies compared with other warm-season legumes that have been sequenced. A surprising outcome is the identification of an inversion of 4.2 Mb among landraces and cultivars, which includes a gene that has been associated in other plants with interactions with the parasitic weed Striga gesnerioides. The genome sequence facilitated the identification of a putative syntelog for multiple organ gigantism in legumes. A revised numbering system has been adopted for cowpea chromosomes based on synteny with common bean (Phaseolus vulgaris). An estimate of nuclear genome size of 640.6 Mbp based on cytometry is presented.
Department of Botany and Plant Sciences University of California Riverside CA 92521 USA
Department of Computer Science and Engineering University of California Riverside CA 92521 USA
Department of Nematology University of California Riverside CA 92521 USA
Department of Plant Sciences University of California Davis CA 95616 USA
Institut de Recherche en Horticulture et Semences INRA Université d'Angers 49071 Beaucouzé France
Institute of Biotechnology University of Helsinki Helsinki Finland
National Center for Genome Resources Santa Fe NM 87505 USA
Natural Resources Institute Finland Helsinki Finland
US Department of Agriculture Agricultural Research Service Ames IA USA
US Department of Energy Joint Genome Institute Walnut Creek CA 94598 USA
Viikki Plant Science Centre University of Helsinki Helsinki Finland
Zobrazit více v PubMed
Abad, P. , Gouzy, J. , Aury, J.‐M. et al. (2008) Genome sequence of the metazoan plant‐parasitic nematode Meloidogyne incognita . Nat. Biotechnol. 26, 909. PubMed
Alverson, A.J. , Zhuo, S. , Rice, D.W. , Sloan, D.B. and Palmer, J.D. (2011) The mitochondrial genome of the legume Vigna radiata and the analysis of recombination across short mitochondrial repeats. PLoS One, 6, e16404. PubMed PMC
Arumuganathan, K. and Earle, E. (1991) Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9, 208–218.
Bao, W. , Kojima, K.K. and Kohany, O. (2015) Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA, 6, 11. PubMed PMC
Bartrina, I. , Jensen, H. , Novak, O. , Strnad, M. , Werner, T. and Schmülling, T. (2017) Gain‐of‐function mutants of the cytokinin receptors AHK2 and AHK3 regulate plant organ size, flowering time and plant longevity. Plant Physiol. 173, 1783–1797. PubMed PMC
Berlin, K. , Koren, S. , Chin, C.‐S. , Drake, J.P. , Landolin, J.M. and Phillippy, A.M. (2015) Assembling large genomes with single‐molecule sequencing and locality‐sensitive hashing. Nat. Biotechnol. 33, 623. PubMed
Boukar, O. , Kong, L. , Singh, B. , Murdock, L. and Ohm, H. (2004) AFLP and AFLP‐derived SCAR markers associated with Striga gesnerioides resistance in cowpea. Crop Sci. 44, 1259–1264.
Boukar, O. , Belko, N. , Chamarthi, S. , Togola, A. , Batieno, J. , Owusu, E. , Haruna, M. , Diallo, S. , Umar, M.L. and Olufajo, O. (2018) Cowpea (Vigna unguiculata): genetics, genomics and breeding. Plant Breed. 1–10, 10.1111/pbr.12589. DOI
Camacho, C. , Coulouris, G. , Avagyan, V. , Ma, N. , Papadopoulos, J. , Bealer, K. and Madden, T.L. (2009) BLAST+: architecture and applications. BMC Bioinform. 10, 421. PubMed PMC
Cannon, S.B. , Mitra, A. , Baumgarten, A. , Young, N.D. and May, G. (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana . BMC Plant Biol. 4, 10. PubMed PMC
Cao, H. , Hastie, A.R. , Cao, D. , Lam, E.T. , Sun, Y. , Huang, H. , Liu, X. , Lin, L. , Andrews, W. and Chan, S. (2014) Rapid detection of structural variation in a human genome using nanochannel‐based genome mapping technology. GigaScience, 3, 34. PubMed PMC
Carvalho, M. , Muñoz‐Amatriaín, M. , Castro, I. , Lino‐Neto, T. , Matos, M. , Egea‐Cortines, M. , Rosa, E. , Close, T. and Carnide, V. (2017) Genetic diversity and structure of Iberian Peninsula cowpeas compared to world‐wide cowpea accessions using high density SNP markers. BMC Genom. 18, 891. PubMed PMC
Chen, K. , Wallis, J.W. , McLellan, M.D. , Larson, D.E. , Kalicki, J.M. , Pohl, C.S. , McGrath, S.D. , Wendl, M.C. , Zhang, Q. and Locke, D.P. (2009) BreakDancer: an algorithm for high‐resolution mapping of genomic structural variation. Nat. Methods, 6, 677. PubMed PMC
Chieco, P. and Derenzini, M. (1999) The Feulgen reaction 75 years on. Histochem. Cell Biol. 111, 345–358. PubMed
Chin, C.‐S. , Alexander, D.H. , Marks, P. , Klammer, A.A. , Drake, J. , Heiner, C. , Clum, A. , Copeland, A. , Huddleston, J. and Eichler, E.E. (2013) Nonhybrid, finished microbial genome assemblies from long‐read SMRT sequencing data. Nat. Methods, 10, 563. PubMed
Chin, C.‐S. , Peluso, P. , Sedlazeck, F.J. , Nattestad, M. , Concepcion, G.T. , Clum, A. , Dunn, C. , O'Malley, R. , Figueroa‐Balderas, R. and Morales‐Cruz, A. (2016) Phased diploid genome assembly with single‐molecule real‐time sequencing. Nat. Methods, 13, 1050. PubMed PMC
Cleary, A. and Farmer, A. (2017) Genome Context Viewer: visual exploration of multiple annotated genomes using microsynteny. Bioinformatics, 34, 1562–1564. PubMed PMC
D'Andrea, A.C. , Kahlheber, S. , Logan, A.L. and Watson, D.J. (2007) Early domesticated cowpea (Vigna unguiculata) from Central Ghana. Antiquity, 81, 686–698.
Doebley, J.F. , Gaut, B.S. and Smith, B.D. (2006) The molecular genetics of crop domestication. Cell, 127, 1309–1321. PubMed
Dolezel, J. (2003) Nuclear DNA content and genome size of trout and human. Cytometry, 51, 127–128. PubMed
Doležel, J. , Greilhuber, J. , Lucretti, S. , Meister, A. , Lysák, M. , Nardi, L. and Obermayer, R. (1998) Plant genome size estimation by flow cytometry: inter‐laboratory comparison. Ann. Bot. 82, 17–26. PubMed
Doležel, J. , Greilhuber, J. and Suda, J. (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2, 2233. PubMed
Eddy, S.R. (2011) Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195. PubMed PMC
Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797. PubMed PMC
Ellinghaus, D. , Kurtz, S. and Willhoeft, U. (2008) LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinform. 9, 18. PubMed PMC
Enright, A.J. , van Dongen, S. and Ouzounis, C.A. (2002) An efficient algorithm for large‐scale detection of protein families. Nucleic Acids Res. 30, 1575–1584. PubMed PMC
Faris, D. (1965) The origin and evolution of the cultivated forms of Vigna sinensis . Can. J. Genet. Cytol. 7, 433–452.
Gobena, D. , Shimels, M. , Rich, P.J. , Ruyter‐Spira, C. , Bouwmeester, H. , Kanuganti, S. , Mengiste, T. and Ejeta, G. (2017) Mutation in sorghum LOW GERMINATION STIMULANT 1 alters strigolactones and causes Striga resistance. Proc. Natl Acad. Sci. USA, 114, 4471–4476. PubMed PMC
Haas, B.J. , Delcher, A.L. , Mount, S.M. , Wortman, J.R. , Smith, R.K. Jr , Hannick, L.I. , Maiti, R. , Ronning, C.M. , Rusch, D.B. and Town, C.D. (2003) Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666. PubMed PMC
Hoff, K.J. , Lange, S. , Lomsadze, A. , Borodovsky, M. and Stanke, M. (2015) BRAKER1: unsupervised RNA‐Seq‐based genome annotation with GeneMark‐ET and AUGUSTUS. Bioinformatics, 32, 767–769. PubMed PMC
Huynh, B.L. , Ehlers, J.D. , Huang, B.E. , Muñoz‐Amatriaín, M. , Lonardi, S. , Santos, J.R. , Ndeve, A. , Batieno, B.J. , Boukar, O. and Cisse, N. (2018) A multi‐parent advanced generation inter‐cross (MAGIC) population for genetic analysis and improvement of cowpea (Vigna unguiculata L. Walp.). Plant J. 93, 1129–1142. PubMed
Initiative, I.B. (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon . Nature, 463, 763. PubMed
Iwata‐Otsubo, A. , Lin, J.‐Y. , Gill, N. and Jackson, S.A. (2016) Highly distinct chromosomal structures in cowpea (Vigna unguiculata), as revealed by molecular cytogenetic analysis. Chromosome Res. 24, 197–216. PubMed PMC
Kalderimis, A. , Lyne, R. , Butano, D. , Contrino, S. , Lyne, M. , Heimbach, J. , Hu, F. , Smith, R. , Štěpán, R. and Sullivan, J. (2014) InterMine: extensive web services for modern biology. Nucleic Acids Res. 42, W468–W472. PubMed PMC
Kamath, G.M. , Shomorony, I. , Xia, F. , Courtade, T.A. and David, N.T. (2017) HINGE: long‐read assembly achieves optimal repeat resolution. Genome Res. 27, 747–756. PubMed PMC
Kang, Y.J. , Kim, S.K. , Kim, M.Y. , Lestari, P. , Kim, K.H. , Ha, B.‐K. , Jun, T.H. , Hwang, W.J. , Lee, T. and Lee, J. (2014) Genome sequence of mungbean and insights into evolution within Vigna species. Nat. Commun. 5, ncomms6443. PubMed PMC
Kirkpatrick, M. (2010) How and why chromosome inversions evolve. PLoS Biol. 8, e1000501. PubMed PMC
Koren, S. , Walenz, B.P. , Berlin, K. , Miller, J.R. , Bergman, N.H. and Phillippy, A.M. (2017) Canu: scalable and accurate long‐read assembly via adaptive k‐mer weighting and repeat separation. Genome Res. 27, 722–736. PubMed PMC
Kotir, J.H. (2011) Climate change and variability in Sub‐Saharan Africa: a review of current and future trends and impacts on agriculture and food security. Environ. Dev. Sustain. 13, 587–605.
Krzywinski, M. , Schein, J. , Birol, I. , Connors, J. , Gascoyne, R. , Horsman, D. , Jones, S.J. and Marra, M.A. (2009) Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645. PubMed PMC
Kurtz, S. , Phillippy, A. , Delcher, A.L. , Smoot, M. , Shumway, M. , Antonescu, C. and Salzberg, S.L. (2004) Versatile and open software for comparing large genomes. Genome Biol. 5, R12. PubMed PMC
Leister, D. (2004) Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance genes. Trends Genet. 20, 116–122. PubMed
Levinson, G. and Gutman, G.A. (1987) Slipped‐strand mispairing: a major mechanism for DNA sequence evolution. Mol. Biol. Evol. 4, 203–221. PubMed
Li, H. (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA‐MEM. arXiv preprint arXiv:1303.3997.
Li, Z. , Defoort, J. , Tasdighian, S. , Maere, S. , , de Van Peer, Y. and De Smet, R. (2016) Gene duplicability of core genes is highly consistent across all angiosperms. Plant Cell, 28, 326–344. PubMed PMC
Lin, Y. , Yuan, J. , Kolmogorov, M. , Shen, M.W. , Chaisson, M. and Pevzner, P.A. (2016) Assembly of long error‐prone reads using de Bruijn graphs. Proc. Natl Acad. Sci. USA, 113, E8396–E8405. PubMed PMC
Lo, S. , Muñoz‐Amatriaín, M. , Boukar, O. , Herniter, I. , Cisse, N. , Guo, Y.‐N. , Roberts, P.A. , Xu, S. , Fatokun, C. and Close, T.J. (2018) Identification of QTL controlling domestication‐related traits in cowpea (Vigna unguiculata L. Walp). Sci. Rep. 8, 6261. PubMed PMC
Luo, M.‐C. , Gu, Y.Q. , Puiu, D. , Wang, H. , Twardziok, S.O. , Deal, K.R. , Huo, N. , Zhu, T. , Wang, L. and Wang, Y. (2017) Genome sequence of the progenitor of the wheat D genome Aegilops tauschii . Nature, 551, 498–502. PubMed PMC
Mascher, M. , Gundlach, H. , Himmelbach, A. , Beier, S. , Twardziok, S.O. , Wicker, T. , Radchuk, V. , Dockter, C. , Hedley, P.E. and Russell, J. (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature, 544, 427. PubMed
Misra, V.A. , Wang, Y. and Timko, M.P. (2017) A compendium of transcription factor and transcriptionally active protein coding gene families in cowpea (Vigna unguiculata L.). BMC Genom. 18, 898. PubMed PMC
Mistry, J. , Finn, R.D. , Eddy, S.R. , Bateman, A. and Punta, M. (2013) Challenges in homology search: HMMER3 and convergent evolution of coiled‐coil regions. Nucleic Acids Res. 41, e121–e121. PubMed PMC
Muchero, W. , Diop, N.N. , Bhat, P.R. , Fenton, R.D. , Wanamaker, S. , Pottorff, M. , Hearne, S. , Cisse, N. , Fatokun, C. and Ehlers, J.D. (2009) A consensus genetic map of cowpea [Vigna unguiculata (L) Walp.] and synteny based on EST‐derived SNPs. Proc. Natl Acad. Sci. USA, 106, 18159–18164. PubMed PMC
Muñoz‐Amatriaín, M. , Mirebrahim, H. , Xu, P. et al. (2017) Genome resources for climate‐resilient cowpea, an essential crop for food security. Plant J. 89, 1042–1054. PubMed
Ouédraogo, J. , Maheshwari, V. , Berner, D. , St‐Pierre, C.‐A. , Belzile, F. and Timko, M. (2001) Identification of AFLP markers linked to resistance of cowpea (Vigna unguiculata L.) to parasitism by Striga gesnerioides . Theor. Appl. Genet. 102, 1029–1036.
Ouédraogo, J.T. , Tignegre, J.‐B. , Timko, M.P. and Belzile, F.J. (2002) AFLP markers linked to resistance against Striga gesnerioides race 1 in cowpea (Vigna unguiculata). Genome, 45, 787–793. PubMed
Ounit, R. and Lonardi, S. (2016) Higher classification sensitivity of short metagenomic reads with CLARK‐S. Bioinformatics, 32, 3823–3825. PubMed
Pan, W. , Wanamaker, S.I. , Ah‐Fong, A.M. , Judelson, H.S. and Lonardi, S. (2018) Novo&Stitch: accurate reconciliation of genome assemblies via optical maps. Bioinformatics, 34, i43–i51. PubMed PMC
Parida, A. , Raina, S. and Narayan, R. (1990) Quantitative DNA variation between and within chromosome complements of Vigna species (Fabaceae). Genetica, 82, 125–133.
Puig, M. , Casillas, S. , Villatoro, S. and Cáceres, M. (2015) Human inversions and their functional consequences. Brief. Funct. Genom. 14, 369–379. PubMed PMC
Riefler, M. , Novak, O. , Strnad, M. and Schmülling, T. (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell, 18, 40–54. PubMed PMC
Sakai, H. , Naito, K. , Ogiso‐Tanaka, E. , Takahashi, Y. , Iseki, K. , Muto, C. , Satou, K. , Teruya, K. , Shiroma, A. and Shimoji, M. (2015) The power of single molecule real‐time sequencing technology in the de novo assembly of a eukaryotic genome. Sci. Rep. 5, 16780. PubMed PMC
Santos, J.R.P. , Ndeve, A.D. , Huynh, B.‐L. , Matthews, W.C. and Roberts, P.A. (2018) QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root‐knot nematode resistance. PLoS ONE, 13, e0189185. PubMed PMC
Schmutz, J. , Cannon, S.B. , Schlueter, J. , Ma, J. , Mitros, T. , Nelson, W. , Hyten, D.L. , Song, Q. , Thelen, J.J. and Cheng, J. (2010) Genome sequence of the palaeopolyploid soybean. Nature, 463, 178. PubMed
Schmutz, J. , McClean, P.E. , Mamidi, S. , Wu, G.A. , Cannon, S.B. , Grimwood, J. , Jenkins, J. , Shu, S. , Song, Q. and Chavarro, C. (2014) A reference genome for common bean and genome‐wide analysis of dual domestications. Nat. Genet. 46, 707. PubMed PMC
Serdeczny, O. , Waters, E. and Chan, S. (2016) Non‐economic loss and damage in the context of climate change. German Development Institute Discussion Paper, 3, 2016.
She, C.W. , Jiang, X.H. , Ou, L.J. , Liu, J. , Long, K.L. , Zhang, L.H. , Duan, W.T. , Zhao, W. and Hu, J.C. (2015) Molecular cytogenetic characterisation and phylogenetic analysis of the seven cultivated Vigna species (Fabaceae). Plant Biol. 17, 268–280. PubMed
Shelton, J.M. , Coleman, M.C. , Herndon, N. , Lu, N. , Lam, E.T. , Anantharaman, T. , Sheth, P. and Brown, S.J. (2015) Tools and pipelines for BioNano data: molecule assembly pipeline and FASTA super scaffolding tool. BMC Genom. 16, 734. PubMed PMC
Simão, F.A. , Waterhouse, R.M. , Ioannidis, P. , Kriventseva, E.V. and Zdobnov, E.M. (2015) BUSCO: assessing genome assembly and annotation completeness with single‐copy orthologs. Bioinformatics, 31, 3210–3212. PubMed
Singh, B. (2014) Cowpea: The Food Legume of the 21st Century. Madison, WI, USA: Crop Science Society of America.
Smit, A. , Hubley, R.R. and Green, P.R. (2008) Open‐1.0. 2008–2015. Seattle, WA, USA: Institute for Systems Biology.
Smit, A. , Hubley, R. and Green, P. (2017) 1996–2010. RepeatMasker Open‐3.0.
Stamatakis, A. , Hoover, P. and Rougemont, J. (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 57, 758–771. PubMed
Tang, H. , Zhang, X. , Miao, C. , Zhang, J. , Ming, R. , Schnable, J.C. , Schnable, P.S. , Lyons, E. and Lu, J. (2015) ALLMAPS: robust scaffold ordering based on multiple maps. Genome Biol. 16, 3. PubMed PMC
Timko, M.P. , Rushton, P.J. , Laudeman, T.W. , Bokowiec, M.T. , Chipumuro, E. , Cheung, F. , Town, C.D. and Chen, X. (2008) Sequencing and analysis of the gene‐rich space of cowpea. BMC Genom. 9, 103. PubMed PMC
Varshney, R.K. , Chen, W. , Li, Y. , Bharti, A.K. , Saxena, R.K. , Schlueter, J.A. , Donoghue, M.T. , Azam, S. , Fan, G. and Whaley, A.M. (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource‐poor farmers. Nat. Biotechnol. 30, 83. PubMed
Vasconcelos, E.V. , De Andrade Fonseca, A.F. , Pedrosa‐Harand, A. , De Andrade Bortoleti, K.C. , Benko‐Iseppon, A.M. , Da Costa, A.F. and Brasileiro‐Vidal, A.C. (2015) Intra‐ and interchromosomal rearrangements between cowpea [Vigna unguiculata (L.) Walp.] and common bean (Phaseolus vulgaris L.) revealed by BAC‐FISH. Chromosome Res. 23, 253–266. PubMed
Wicker, T. , Sabot, F. , Hua‐Van, A. et al. (2007) A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973. PubMed
Wu, Y. , Bhat, P.R. , Close, T.J. and Lonardi, S. (2008) Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet. 4, e1000212. PubMed PMC
Xu, P. , Wu, X. , Wang, B. , Hu, T. , Lu, Z. , Liu, Y. , Qin, D. , Wang, S. and Li, G. (2013) QTL mapping and epistatic interaction analysis in asparagus bean for several characterized and novel horticulturally important traits. BMC Genet. 14, 4. PubMed PMC
Yang, K. , Tian, Z. , Chen, C. , Luo, L. , Zhao, B. , Wang, Z. , Yu, L. , Li, Y. , Sun, Y. and Li, W. (2015) Genome sequencing of adzuki bean (Vigna angularis) provides insight into high starch and low fat accumulation and domestication. Proc. Natl Acad. Sci. USA, 112, 13213–13218. PubMed PMC
Yao, S. , Jiang, C. , Huang, Z. , Torres‐Jerez, I. , Chang, J. , Zhang, H. , Udvardi, M. , Liu, R. and Verdier, J. (2016) The Vigna unguiculata gene expression atlas (VuGEA) from de novo assembly and quantification of RNA‐seq data provides insights into seed maturation mechanisms. Plant J. 88, 318–327. PubMed
Yeh, R.‐F. , Lim, L.P. and Burge, C.B. (2001) Computational inference of homologous gene structures in the human genome. Genome Res. 11, 803–816. PubMed PMC