New α- and β-cyclodextrin derivatives with cinchona alkaloids used in asymmetric organocatalytic reactions
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31019575
PubMed Central
PMC6466772
DOI
10.3762/bjoc.15.80
Knihovny.cz E-zdroje
- Klíčová slova
- CuAAC click reaction, asymmetric allylic amination, cinchona alkaloids, cyclodextrin, organocatalysts,
- Publikační typ
- časopisecké články MeSH
The preparation of new organocatalysts for asymmetric syntheses has become a key stage of enantioselective catalysis. In particular, the development of new cyclodextrin (CD)-based organocatalysts allowed to perform enantioselective reactions in water and to recycle catalysts. However, only a limited number of organocatalytic moieties and functional groups have been attached to CD scaffolds so far. Cinchona alkaloids are commonly used to catalyze a wide range of enantioselective reactions. Thus, in this study, we report the preparation of new α- and β-CD derivatives monosubstituted with cinchona alkaloids (cinchonine, cinchonidine, quinine and quinidine) on the primary rim through a CuAAC click reaction. Subsequently, permethylated analogs of these cinchona alkaloid-CD derivatives also were synthesized and the catalytic activity of all derivatives was evaluated in several enantioselective reactions, specifically in the asymmetric allylic amination (AAA), which showed a promising enantiomeric excess of up to 75% ee. Furthermore, a new disubstituted α-CD catalyst was prepared as a pure AD regioisomer and also tested in the AAA. Our results indicate that (i) the cinchona alkaloid moiety can be successfully attached to CD scaffolds through a CuAAC reaction, (ii) the permethylated cinchona alkaloid-CD catalysts showed better results than the non-methylated CDs analogues in the AAA reaction, (iii) promising enantiomeric excesses are achieved, and (iv) the disubstituted CD derivatives performed similarly to monosubstituted CDs. Therefore, these new CD derivatives with cinchona alkaloids effectively catalyze asymmetric allylic aminations and have the potential to be successfully applied in other enantioselective reactions.
Zobrazit více v PubMed
Crini G. Chem Rev. 2014;114:10940–10975. doi: 10.1021/cr500081p. PubMed DOI
Szejtli J. Chem Rev. 1998;98:1743–1754. doi: 10.1021/cr970022c. PubMed DOI
Breslow R, Dong S D. Chem Rev. 1998;98:1997–2012. doi: 10.1021/cr970011j. PubMed DOI
Easton C J. Pure Appl Chem. 2005;77:1865–1871. doi: 10.1351/pac200577111865. DOI
Hapiot F, Tilloy S, Monflier E. Chem Rev. 2006;106:767–781. doi: 10.1021/cr050576c. PubMed DOI
Bogliotti N, Dalko P I. Shape and Site-Selective Asymmetric Reactions. In: Dalko P I, editor. Enantioselective organocatalysis: reactions and experimental procedures. Weinheim: Wiley-VCH; 2007.
Pedersen C M, Bols M. Cyclodextrin-Based Artificial Enzymes: Synthesis and Function. In: Nielsen M B, editor. Organic Synthesis and Molecular Engineering. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2013. pp. 305–332. DOI
Wu J, Du X, Ma J, Zhang Y, Shi Q, Luo L, Song B, Yang S, Hu D. Green Chem. 2014;16:3210–3217. doi: 10.1039/c3gc42400f. DOI
Tayade Y A, Padvi S A, Wagh Y B, Dalal D S. Tetrahedron Lett. 2015;56:2441–2447. doi: 10.1016/j.tetlet.2015.03.084. PubMed DOI PMC
Sim J H, Song C E. Angew Chem, Int Ed. 2017;56:1835–1839. doi: 10.1002/anie.201611466. PubMed DOI
Macaev F, Boldescu V. Symmetry. 2015;7:1699–1720. doi: 10.3390/sym7041699. DOI
Hapiot F, Menuel S, Ferreira M, Léger B, Bricout H, Tilloy S, Monflier E. ACS Sustainable Chem Eng. 2017;5:3598–3606. doi: 10.1021/acssuschemeng.6b02886. DOI
Jouffroy M, Gramage-Doria R, Armspach D, Sémeril D, Oberhauser W, Matt D, Toupet L. Angew Chem, Int Ed. 2014;53:3937–3940. doi: 10.1002/anie.201311291. PubMed DOI
Hapiot F, Ponchel A, Tilloy S, Monflier E. C R Chim. 2011;14:149–166. doi: 10.1016/j.crci.2010.04.003. DOI
De Rosa M, La Manna P, Talotta C, Soriente A, Gaeta C, Neri P. Front Chem (Lausanne, Switz) 2018:6. doi: 10.3389/fchem.2018.00084. PubMed DOI PMC
Kanagaraj K, Suresh P, Pitchumani K. Org Lett. 2010;12:4070–4073. doi: 10.1021/ol101658n. PubMed DOI
Doyagüez E G, Fernández-Mayoralas A. Tetrahedron. 2012;68:7345–7354. doi: 10.1016/j.tet.2012.06.089. DOI
Shen H-M, Ji H-B. Tetrahedron Lett. 2012;53:3541–3545. doi: 10.1016/j.tetlet.2012.04.140. DOI
Liu K, Zhang G. Tetrahedron Lett. 2015;56:243–246. doi: 10.1016/j.tetlet.2014.11.084. DOI
Kacprzak K M. Chemistry and Biology of Cinchona Alkaloids. In: Ramawat K G, Mérillon J-M, editors. Natural Products. Berlin, Heidelberg: Springer; 2013. pp. 605–641. DOI
Ghosh A K, Zhou B. Tetrahedron Lett. 2013;54:3500–3502. doi: 10.1016/j.tetlet.2013.04.080. PubMed DOI PMC
Nakayama Y, Gotanda T, Ito K. Tetrahedron Lett. 2011;52:6234–6237. doi: 10.1016/j.tetlet.2011.09.064. DOI
Ogawa S, Shibata N, Inagaki J, Nakamura S, Toru T, Shiro M. Angew Chem, Int Ed. 2007;46:8666–8669. doi: 10.1002/anie.200703317. PubMed DOI
Marcelli T, Hiemstra H. Synthesis. 2012;44:2114. doi: 10.1055/s-0032-1316742. DOI
Liu Y, Li L, Zhang H-Y, Fan Z, Guan X-D. Bioorg Chem. 2003;31:11–23. doi: 10.1016/s0045-2068(02)00512-6. PubMed DOI
Liu Y, Chen G-S, Chen Y, Ding F, Chen J. Org Biomol Chem. 2005;3:2519. doi: 10.1039/b506053b. PubMed DOI
Tang W, Ng S-C. Nat Protoc. 2008;3:691–697. doi: 10.1038/nprot.2008.37. PubMed DOI
Celewicz L, Kacprzak K, Ruszkowski P, inventors. Application of Cinchona alkaloid derivatives as cytotoxic compounds. CA2891633A1. Canadian Pat. Appl. 2015 Mar 26;
Bauer M, Fajolles C, Charitat T, Wacklin H, Daillant J. J Phys Chem B. 2011;115:15263–15270. doi: 10.1021/jp205917q. PubMed DOI
Al Temimi A H K, Boltje T J, Zollinger D, Rutjes F P J T, Feiters M C. Bioconjugate Chem. 2017;28(8):2160–2166. doi: 10.1021/acs.bioconjchem.7b00319. PubMed DOI PMC
Guieu S, Zaborova E, Blériot Y, Poli G, Jutand A, Madec D, Prestat G, Sollogoub M. Angew Chem, Int Ed. 2010;49:2314–2318. doi: 10.1002/anie.200907156. PubMed DOI
Guieu S, Sollogoub M. Advances in Cyclodextrin Chemistry. In: Werz D, Vidal S, editors. Modern Synthetic Methods in Carbohydrate Chemistry. Weinheim, Germany: Wiley-VCH; 2013. pp. 241–283. DOI
Tichá I, Benkovics G, Malanga M, Jindřich J. Beilstein J Org Chem. 2018;14:2829–2837. doi: 10.3762/bjoc.14.261. PubMed DOI PMC
Pearce A J, Sinaÿ P. Angew Chem, Int Ed. 2000;39(20):3610–3612. doi: 10.1002/1521-3773(20001016)39:20<3610::aid-anie3610>3.0.co;2-v. PubMed DOI
Kumprecht L, Buděšínský M, Vondrášek J, Vymětal J, Černý J, Císařová I, Brynda J, Herzig V, Koutník P, Závada J, et al. J Org Chem. 2009;74(3):1082–1092. doi: 10.1021/jo802139s. PubMed DOI
Fredy J W, Scelle J, Guenet A, Morel E, Adam de Beaumais S, Ménand M, Marvaud V, Bonnet C S, Tóth E, Sollogoub M, et al. Chem – Eur J. 2014;20(35):10915–10920. doi: 10.1002/chem.201403635. PubMed DOI
Menuel S, Azaroual N, Landy D, Six N, Hapiot F, Monflier E. Chem – Eur J. 2011;17:3949–3955. doi: 10.1002/chem.201003221. PubMed DOI
Dočekal V, Šimek M, Dračínský M, Veselý J. Chem – Eur J. 2018;24:13441–13445. doi: 10.1002/chem.201803677. PubMed DOI