New α- and β-cyclodextrin derivatives with cinchona alkaloids used in asymmetric organocatalytic reactions

. 2019 ; 15 () : 830-839. [epub] 20190401

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31019575

The preparation of new organocatalysts for asymmetric syntheses has become a key stage of enantioselective catalysis. In particular, the development of new cyclodextrin (CD)-based organocatalysts allowed to perform enantioselective reactions in water and to recycle catalysts. However, only a limited number of organocatalytic moieties and functional groups have been attached to CD scaffolds so far. Cinchona alkaloids are commonly used to catalyze a wide range of enantioselective reactions. Thus, in this study, we report the preparation of new α- and β-CD derivatives monosubstituted with cinchona alkaloids (cinchonine, cinchonidine, quinine and quinidine) on the primary rim through a CuAAC click reaction. Subsequently, permethylated analogs of these cinchona alkaloid-CD derivatives also were synthesized and the catalytic activity of all derivatives was evaluated in several enantioselective reactions, specifically in the asymmetric allylic amination (AAA), which showed a promising enantiomeric excess of up to 75% ee. Furthermore, a new disubstituted α-CD catalyst was prepared as a pure AD regioisomer and also tested in the AAA. Our results indicate that (i) the cinchona alkaloid moiety can be successfully attached to CD scaffolds through a CuAAC reaction, (ii) the permethylated cinchona alkaloid-CD catalysts showed better results than the non-methylated CDs analogues in the AAA reaction, (iii) promising enantiomeric excesses are achieved, and (iv) the disubstituted CD derivatives performed similarly to monosubstituted CDs. Therefore, these new CD derivatives with cinchona alkaloids effectively catalyze asymmetric allylic aminations and have the potential to be successfully applied in other enantioselective reactions.

Zobrazit více v PubMed

Crini G. Chem Rev. 2014;114:10940–10975. doi: 10.1021/cr500081p. PubMed DOI

Szejtli J. Chem Rev. 1998;98:1743–1754. doi: 10.1021/cr970022c. PubMed DOI

Breslow R, Dong S D. Chem Rev. 1998;98:1997–2012. doi: 10.1021/cr970011j. PubMed DOI

Easton C J. Pure Appl Chem. 2005;77:1865–1871. doi: 10.1351/pac200577111865. DOI

Hapiot F, Tilloy S, Monflier E. Chem Rev. 2006;106:767–781. doi: 10.1021/cr050576c. PubMed DOI

Bogliotti N, Dalko P I. Shape and Site-Selective Asymmetric Reactions. In: Dalko P I, editor. Enantioselective organocatalysis: reactions and experimental procedures. Weinheim: Wiley-VCH; 2007.

Pedersen C M, Bols M. Cyclodextrin-Based Artificial Enzymes: Synthesis and Function. In: Nielsen M B, editor. Organic Synthesis and Molecular Engineering. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2013. pp. 305–332. DOI

Wu J, Du X, Ma J, Zhang Y, Shi Q, Luo L, Song B, Yang S, Hu D. Green Chem. 2014;16:3210–3217. doi: 10.1039/c3gc42400f. DOI

Tayade Y A, Padvi S A, Wagh Y B, Dalal D S. Tetrahedron Lett. 2015;56:2441–2447. doi: 10.1016/j.tetlet.2015.03.084. PubMed DOI PMC

Sim J H, Song C E. Angew Chem, Int Ed. 2017;56:1835–1839. doi: 10.1002/anie.201611466. PubMed DOI

Macaev F, Boldescu V. Symmetry. 2015;7:1699–1720. doi: 10.3390/sym7041699. DOI

Hapiot F, Menuel S, Ferreira M, Léger B, Bricout H, Tilloy S, Monflier E. ACS Sustainable Chem Eng. 2017;5:3598–3606. doi: 10.1021/acssuschemeng.6b02886. DOI

Jouffroy M, Gramage-Doria R, Armspach D, Sémeril D, Oberhauser W, Matt D, Toupet L. Angew Chem, Int Ed. 2014;53:3937–3940. doi: 10.1002/anie.201311291. PubMed DOI

Hapiot F, Ponchel A, Tilloy S, Monflier E. C R Chim. 2011;14:149–166. doi: 10.1016/j.crci.2010.04.003. DOI

De Rosa M, La Manna P, Talotta C, Soriente A, Gaeta C, Neri P. Front Chem (Lausanne, Switz) 2018:6. doi: 10.3389/fchem.2018.00084. PubMed DOI PMC

Kanagaraj K, Suresh P, Pitchumani K. Org Lett. 2010;12:4070–4073. doi: 10.1021/ol101658n. PubMed DOI

Doyagüez E G, Fernández-Mayoralas A. Tetrahedron. 2012;68:7345–7354. doi: 10.1016/j.tet.2012.06.089. DOI

Shen H-M, Ji H-B. Tetrahedron Lett. 2012;53:3541–3545. doi: 10.1016/j.tetlet.2012.04.140. DOI

Liu K, Zhang G. Tetrahedron Lett. 2015;56:243–246. doi: 10.1016/j.tetlet.2014.11.084. DOI

Kacprzak K M. Chemistry and Biology of Cinchona Alkaloids. In: Ramawat K G, Mérillon J-M, editors. Natural Products. Berlin, Heidelberg: Springer; 2013. pp. 605–641. DOI

Ghosh A K, Zhou B. Tetrahedron Lett. 2013;54:3500–3502. doi: 10.1016/j.tetlet.2013.04.080. PubMed DOI PMC

Nakayama Y, Gotanda T, Ito K. Tetrahedron Lett. 2011;52:6234–6237. doi: 10.1016/j.tetlet.2011.09.064. DOI

Ogawa S, Shibata N, Inagaki J, Nakamura S, Toru T, Shiro M. Angew Chem, Int Ed. 2007;46:8666–8669. doi: 10.1002/anie.200703317. PubMed DOI

Marcelli T, Hiemstra H. Synthesis. 2012;44:2114. doi: 10.1055/s-0032-1316742. DOI

Liu Y, Li L, Zhang H-Y, Fan Z, Guan X-D. Bioorg Chem. 2003;31:11–23. doi: 10.1016/s0045-2068(02)00512-6. PubMed DOI

Liu Y, Chen G-S, Chen Y, Ding F, Chen J. Org Biomol Chem. 2005;3:2519. doi: 10.1039/b506053b. PubMed DOI

Tang W, Ng S-C. Nat Protoc. 2008;3:691–697. doi: 10.1038/nprot.2008.37. PubMed DOI

Celewicz L, Kacprzak K, Ruszkowski P, inventors. Application of Cinchona alkaloid derivatives as cytotoxic compounds. CA2891633A1. Canadian Pat. Appl. 2015 Mar 26;

Bauer M, Fajolles C, Charitat T, Wacklin H, Daillant J. J Phys Chem B. 2011;115:15263–15270. doi: 10.1021/jp205917q. PubMed DOI

Al Temimi A H K, Boltje T J, Zollinger D, Rutjes F P J T, Feiters M C. Bioconjugate Chem. 2017;28(8):2160–2166. doi: 10.1021/acs.bioconjchem.7b00319. PubMed DOI PMC

Guieu S, Zaborova E, Blériot Y, Poli G, Jutand A, Madec D, Prestat G, Sollogoub M. Angew Chem, Int Ed. 2010;49:2314–2318. doi: 10.1002/anie.200907156. PubMed DOI

Guieu S, Sollogoub M. Advances in Cyclodextrin Chemistry. In: Werz D, Vidal S, editors. Modern Synthetic Methods in Carbohydrate Chemistry. Weinheim, Germany: Wiley-VCH; 2013. pp. 241–283. DOI

Tichá I, Benkovics G, Malanga M, Jindřich J. Beilstein J Org Chem. 2018;14:2829–2837. doi: 10.3762/bjoc.14.261. PubMed DOI PMC

Pearce A J, Sinaÿ P. Angew Chem, Int Ed. 2000;39(20):3610–3612. doi: 10.1002/1521-3773(20001016)39:20<3610::aid-anie3610>3.0.co;2-v. PubMed DOI

Kumprecht L, Buděšínský M, Vondrášek J, Vymětal J, Černý J, Císařová I, Brynda J, Herzig V, Koutník P, Závada J, et al. J Org Chem. 2009;74(3):1082–1092. doi: 10.1021/jo802139s. PubMed DOI

Fredy J W, Scelle J, Guenet A, Morel E, Adam de Beaumais S, Ménand M, Marvaud V, Bonnet C S, Tóth E, Sollogoub M, et al. Chem – Eur J. 2014;20(35):10915–10920. doi: 10.1002/chem.201403635. PubMed DOI

Menuel S, Azaroual N, Landy D, Six N, Hapiot F, Monflier E. Chem – Eur J. 2011;17:3949–3955. doi: 10.1002/chem.201003221. PubMed DOI

Dočekal V, Šimek M, Dračínský M, Veselý J. Chem – Eur J. 2018;24:13441–13445. doi: 10.1002/chem.201803677. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...