Enhanced single-isomer separation and pseudoenantiomer resolution of new primary rim heterobifunctionalized α-cyclodextrin derivatives

. 2018 ; 14 () : 2829-2837. [epub] 20181113

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30498533

The synthesis of batch-to-batch reproducible cyclodextrin (CD) derivatives often requires functionalization at specific positions of the CD skeleton. However, the regioselective preparation of this type of CD derivatives remains a challenge in synthetic chemistry. Thus, the present study aimed to prepare all positional regioisomers on the primary rim of homobifunctionalized diazido-α-CDs by selective substitution on the primary rim. Specifically, three positional regioisomers 6A,6B-, 6A,6C-, and 6A,6D-diazido-α-CDs were prepared via different intermediates (using sulfonylation with capping agents, bromination and tosylation). Furthermore, heterobifunctionalized 6A-azido-6X-mesitylenesulfonyl-α-CDs were also synthesized, and all regioisomers were successfully separated by HPLC. Moreover, the heterobifunctionalized α-CD regioisomers were isolated in gram-scale quantities, isomers AB and AC in the form of a pseudoenantiomeric mixture. The pseudoenantiomers AC/CA and AB/BA were resolved on an analytical scale by HPLC-MS at 10 °C. Thus, the presented synthetic and analytical methods for homo- and heterodisubstituted α-CDs are efficient and reproducible for the preparation of various pure regioisomeric CD derivatives. Accordingly, our findings indicate, (i) the versatility of selectively modified azido and mesitylene CD skeletons in preparing new types of α-CD derivatives and (ii) the potential of using resolved α-CD pseudoenantiomers in other research fields such as organocatalysis.

Zobrazit více v PubMed

Crini G. Chem Rev. 2014;114:10940–10975. doi: 10.1021/cr500081p. PubMed DOI

Szejtli J. Chem Rev. 1998;98(2):1743–1754. doi: 10.1021/cr970022c. PubMed DOI

Řezanka M. Eur J Org Chem. 2016;(32):5322–5334. doi: 10.1002/ejoc.201600693. DOI

Breslow R. Acc Chem Res. 1995;28:146–153. doi: 10.1021/ar00051a008. DOI

Letort S, Mathiron D, Grel T, Albaret C, Daulon S, Djedaïni-Pilard F, Gouhier G, Estour F. Chem Commun. 2015;51:2601–2604. doi: 10.1039/c4cc09189b. PubMed DOI

Macaev F, Boldescu V. Symmetry. 2015;7:1699–1720. doi: 10.3390/sym7041699. DOI

Hapiot F, Tilloy S, Monflier E. Chem Rev. 2006;106:767–781. doi: 10.1021/cr050576c. PubMed DOI

Zhang P, Meijide Suárez J, Driant T, Derat E, Zhang Y, Ménand M, Roland S, Sollogoub M. Angew Chem, Int Ed. 2017;56:10821–10825. doi: 10.1002/anie.201705303. PubMed DOI

Hanessian S, Hocquelet C, Jankowski C. Synlett. 2008:715–719. doi: 10.1055/s-2008-1042803. DOI

Pearce A J, Sinaÿ P. Angew Chem, Int Ed. 2000;39:3610–3612. doi: 10.1002/1521-3773(20001016)39:20<3610::aid-anie3610>3.0.co;2-v. PubMed DOI

Guieu S, Sollogoub M. J Org Chem. 2008;73:2819–2828. doi: 10.1021/jo7027085. PubMed DOI

Bistri O, Sinaÿ P, Sollogoub M. Tetrahedron Lett. 2005;46:7757–7760. doi: 10.1016/j.tetlet.2005.09.046. DOI

Tabushi I, Shimokawa K, Fujita K. Tetrahedron Lett. 1977;18:1527–1530. doi: 10.1016/s0040-4039(01)93093-x. DOI

Tabushi I, Yamamura K, Nabeshima T. J Am Chem Soc. 1984;106:5267–5270. doi: 10.1021/ja00330a039. DOI

Tabushi I, Nabeshima T, Fujita K, Matsunaga A, Imoto T. J Org Chem. 1985;50:2638–2643. doi: 10.1021/jo00215a008. DOI

Fujita K, Matsunaga A, Imoto T. J Am Chem Soc. 1984;106:5740–5741. doi: 10.1021/ja00331a061. DOI

Breslow R, Schmuck C. J Am Chem Soc. 1996;118:6601–6605. doi: 10.1021/ja954307n. DOI

Koga K, Yuan D-Q, Fujita K. Tetrahedron Lett. 2000;41:6855–6857. doi: 10.1016/s0040-4039(00)01160-6. DOI

Yuan D-Q, Yang C, Fukuda T, Fujita K. Tetrahedron Lett. 2003;44:565–568. doi: 10.1016/s0040-4039(02)02503-0. DOI

Armspach D, Matt D. Carbohydr Res. 1998;310:129–133. doi: 10.1016/s0008-6215(98)00139-6. DOI

Yoshikiyo K, Matsui Y, Yamamoto T. Beilstein J Org Chem. 2015;11:1530–1540. doi: 10.3762/bjoc.11.168. PubMed DOI PMC

Guieu S, Sollogoub M. Angew Chem, Int Ed. 2008;47:7060–7063. doi: 10.1002/anie.200801573. PubMed DOI

Yu H, Makino Y, Fukudome M, Xie R-G, Yuan D-Q, Fujita K. Tetrahedron Lett. 2007;48:3267–3271. doi: 10.1016/j.tetlet.2007.03.003. DOI

Petrillo M, Marinescu L, Bols M. J Inclusion Phenom Macrocyclic Chem. 2011;69:425–431. doi: 10.1007/s10847-010-9775-7. DOI

Fujita K, Matsunaga A, Imoto T. Tetrahedron Lett. 1984;25:5533–5536. doi: 10.1016/s0040-4039(01)81618-x. DOI

Fujita K, Nagamura S, Imoto T, Tahara T, Koga T. J Am Chem Soc. 1985;107:3233–3235. doi: 10.1021/ja00297a032. DOI

Guieu S, Sollogoub M. Advances in Cyclodextrin Chemistry. In: Werz D, Vidal S, editors. Modern Synthetic Methods in Carbohydrate Chemistry. Weinheim, Germany: Wiley-VCH; 2014. pp. 241–283.

Gadelle A, Defaye J. Angew Chem. 1991;103:94–95. doi: 10.1002/ange.19911030121. DOI

Heck R, Jicsinszky L, Marsura A. Tetrahedron Lett. 2003;44:5411–5413. doi: 10.1016/s0040-4039(03)01313-3. DOI

Kumprecht L, Buděšínský M, Vondrášek J, Vymětal J, Černý J, Císařová I, Brynda J, Herzig V, Koutník P, Závada J, et al. J Org Chem. 2009;74:1082–1092. doi: 10.1021/jo802139s. PubMed DOI

Tang W, Ng S-C. Nat Protoc. 2008;3:691–697. doi: 10.1038/nprot.2008.37. PubMed DOI

Dai Y, Wang S, Wu J, Tang J, Tang W. RSC Adv. 2012;2:12652–12656. doi: 10.1039/c2ra21940a. DOI

Faugeras P-A, Boëns B, Elchinger P-H, Brouillette F, Montplaisir D, Zerrouki R, Lucas R. Eur J Org Chem. 2012:4087–4105. doi: 10.1002/ejoc.201200013. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...