Enhanced single-isomer separation and pseudoenantiomer resolution of new primary rim heterobifunctionalized α-cyclodextrin derivatives
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30498533
PubMed Central
PMC6244315
DOI
10.3762/bjoc.14.261
Knihovny.cz E-zdroje
- Klíčová slova
- diazido-alpha-cyclodextrin, heterobifunctionalized alpha-cyclodextrin, homobifunctionalized alpha-cyclodextrin, regioisomers, regioselectivity,
- Publikační typ
- časopisecké články MeSH
The synthesis of batch-to-batch reproducible cyclodextrin (CD) derivatives often requires functionalization at specific positions of the CD skeleton. However, the regioselective preparation of this type of CD derivatives remains a challenge in synthetic chemistry. Thus, the present study aimed to prepare all positional regioisomers on the primary rim of homobifunctionalized diazido-α-CDs by selective substitution on the primary rim. Specifically, three positional regioisomers 6A,6B-, 6A,6C-, and 6A,6D-diazido-α-CDs were prepared via different intermediates (using sulfonylation with capping agents, bromination and tosylation). Furthermore, heterobifunctionalized 6A-azido-6X-mesitylenesulfonyl-α-CDs were also synthesized, and all regioisomers were successfully separated by HPLC. Moreover, the heterobifunctionalized α-CD regioisomers were isolated in gram-scale quantities, isomers AB and AC in the form of a pseudoenantiomeric mixture. The pseudoenantiomers AC/CA and AB/BA were resolved on an analytical scale by HPLC-MS at 10 °C. Thus, the presented synthetic and analytical methods for homo- and heterodisubstituted α-CDs are efficient and reproducible for the preparation of various pure regioisomeric CD derivatives. Accordingly, our findings indicate, (i) the versatility of selectively modified azido and mesitylene CD skeletons in preparing new types of α-CD derivatives and (ii) the potential of using resolved α-CD pseudoenantiomers in other research fields such as organocatalysis.
Zobrazit více v PubMed
Crini G. Chem Rev. 2014;114:10940–10975. doi: 10.1021/cr500081p. PubMed DOI
Szejtli J. Chem Rev. 1998;98(2):1743–1754. doi: 10.1021/cr970022c. PubMed DOI
Řezanka M. Eur J Org Chem. 2016;(32):5322–5334. doi: 10.1002/ejoc.201600693. DOI
Breslow R. Acc Chem Res. 1995;28:146–153. doi: 10.1021/ar00051a008. DOI
Letort S, Mathiron D, Grel T, Albaret C, Daulon S, Djedaïni-Pilard F, Gouhier G, Estour F. Chem Commun. 2015;51:2601–2604. doi: 10.1039/c4cc09189b. PubMed DOI
Macaev F, Boldescu V. Symmetry. 2015;7:1699–1720. doi: 10.3390/sym7041699. DOI
Hapiot F, Tilloy S, Monflier E. Chem Rev. 2006;106:767–781. doi: 10.1021/cr050576c. PubMed DOI
Zhang P, Meijide Suárez J, Driant T, Derat E, Zhang Y, Ménand M, Roland S, Sollogoub M. Angew Chem, Int Ed. 2017;56:10821–10825. doi: 10.1002/anie.201705303. PubMed DOI
Hanessian S, Hocquelet C, Jankowski C. Synlett. 2008:715–719. doi: 10.1055/s-2008-1042803. DOI
Pearce A J, Sinaÿ P. Angew Chem, Int Ed. 2000;39:3610–3612. doi: 10.1002/1521-3773(20001016)39:20<3610::aid-anie3610>3.0.co;2-v. PubMed DOI
Guieu S, Sollogoub M. J Org Chem. 2008;73:2819–2828. doi: 10.1021/jo7027085. PubMed DOI
Bistri O, Sinaÿ P, Sollogoub M. Tetrahedron Lett. 2005;46:7757–7760. doi: 10.1016/j.tetlet.2005.09.046. DOI
Tabushi I, Shimokawa K, Fujita K. Tetrahedron Lett. 1977;18:1527–1530. doi: 10.1016/s0040-4039(01)93093-x. DOI
Tabushi I, Yamamura K, Nabeshima T. J Am Chem Soc. 1984;106:5267–5270. doi: 10.1021/ja00330a039. DOI
Tabushi I, Nabeshima T, Fujita K, Matsunaga A, Imoto T. J Org Chem. 1985;50:2638–2643. doi: 10.1021/jo00215a008. DOI
Fujita K, Matsunaga A, Imoto T. J Am Chem Soc. 1984;106:5740–5741. doi: 10.1021/ja00331a061. DOI
Breslow R, Schmuck C. J Am Chem Soc. 1996;118:6601–6605. doi: 10.1021/ja954307n. DOI
Koga K, Yuan D-Q, Fujita K. Tetrahedron Lett. 2000;41:6855–6857. doi: 10.1016/s0040-4039(00)01160-6. DOI
Yuan D-Q, Yang C, Fukuda T, Fujita K. Tetrahedron Lett. 2003;44:565–568. doi: 10.1016/s0040-4039(02)02503-0. DOI
Armspach D, Matt D. Carbohydr Res. 1998;310:129–133. doi: 10.1016/s0008-6215(98)00139-6. DOI
Yoshikiyo K, Matsui Y, Yamamoto T. Beilstein J Org Chem. 2015;11:1530–1540. doi: 10.3762/bjoc.11.168. PubMed DOI PMC
Guieu S, Sollogoub M. Angew Chem, Int Ed. 2008;47:7060–7063. doi: 10.1002/anie.200801573. PubMed DOI
Yu H, Makino Y, Fukudome M, Xie R-G, Yuan D-Q, Fujita K. Tetrahedron Lett. 2007;48:3267–3271. doi: 10.1016/j.tetlet.2007.03.003. DOI
Petrillo M, Marinescu L, Bols M. J Inclusion Phenom Macrocyclic Chem. 2011;69:425–431. doi: 10.1007/s10847-010-9775-7. DOI
Fujita K, Matsunaga A, Imoto T. Tetrahedron Lett. 1984;25:5533–5536. doi: 10.1016/s0040-4039(01)81618-x. DOI
Fujita K, Nagamura S, Imoto T, Tahara T, Koga T. J Am Chem Soc. 1985;107:3233–3235. doi: 10.1021/ja00297a032. DOI
Guieu S, Sollogoub M. Advances in Cyclodextrin Chemistry. In: Werz D, Vidal S, editors. Modern Synthetic Methods in Carbohydrate Chemistry. Weinheim, Germany: Wiley-VCH; 2014. pp. 241–283.
Gadelle A, Defaye J. Angew Chem. 1991;103:94–95. doi: 10.1002/ange.19911030121. DOI
Heck R, Jicsinszky L, Marsura A. Tetrahedron Lett. 2003;44:5411–5413. doi: 10.1016/s0040-4039(03)01313-3. DOI
Kumprecht L, Buděšínský M, Vondrášek J, Vymětal J, Černý J, Císařová I, Brynda J, Herzig V, Koutník P, Závada J, et al. J Org Chem. 2009;74:1082–1092. doi: 10.1021/jo802139s. PubMed DOI
Tang W, Ng S-C. Nat Protoc. 2008;3:691–697. doi: 10.1038/nprot.2008.37. PubMed DOI
Dai Y, Wang S, Wu J, Tang J, Tang W. RSC Adv. 2012;2:12652–12656. doi: 10.1039/c2ra21940a. DOI
Faugeras P-A, Boëns B, Elchinger P-H, Brouillette F, Montplaisir D, Zerrouki R, Lucas R. Eur J Org Chem. 2012:4087–4105. doi: 10.1002/ejoc.201200013. DOI