Lignin Modification Supported by DFT-Based Theoretical Study as a Way to Produce Competitive Natural Antioxidants
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
OSMOZE
The Latvian-France collaboration programme "OSMOZE"
LigProBK
The Latvian State Institute of Wood Chemistry Bioeconomy grant "LigProBK"
P208/12/G016
Czech Science Foundation
Project LO1305
The Ministry of Education, Youth and Sports of the Czech Republic
IGA_PrF_2017_028
The student project IGA_PrF_2017_028 of Palacky University
FCT Ref. UID/CTM/50011/2013
The CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679, financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement
PubMed
31075868
PubMed Central
PMC6539611
DOI
10.3390/molecules24091794
PII: molecules24091794
Knihovny.cz E-resources
- Keywords
- antioxidant activity, lignins, modification, molecular rationalization, stabilizers for polymers,
- MeSH
- Antioxidants chemical synthesis MeSH
- Dimerization MeSH
- Electrons MeSH
- Kinetics MeSH
- Lignin chemistry MeSH
- Polyphenols chemistry MeSH
- Polyurethanes chemistry MeSH
- Proton Magnetic Resonance Spectroscopy MeSH
- Spectroscopy, Fourier Transform Infrared MeSH
- Models, Theoretical * MeSH
- Density Functional Theory * MeSH
- Temperature MeSH
- Hydrogen chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antioxidants MeSH
- Lignin MeSH
- Polyphenols MeSH
- Polyurethanes MeSH
- Hydrogen MeSH
The valorization of lignins as renewable aromatic feedstock is of utmost importance in terms of the use of sustainable resources. This study provides a deductive approach towards market-oriented lignin-derived antioxidants by ascertaining the direct effect of different structural features of lignin on the reactivity of its phenolic OH groups in the radical scavenging reactions. The antioxidant activity of a series of compounds, modeling lignin structural units, was experimentally characterized and rationalized, using thermodynamic descriptors. The calculated O-H bond dissociation enthalpies (BDE) of characteristic lignin subunits were used to predict the modification pathways of technical lignins. The last ones were isolated by soda delignification from different biomass sources and their oligomeric fractions were studied as a raw material for modification and production of optimized antioxidants. These were characterized in terms of chemical structure, molecular weight distribution, content of the functional groups, and the antioxidant activity. The developed approach for the targeted modification of lignins allowed the products competitive with two commercial synthetic phenolic antioxidants in both free radical scavenging and stabilization of thermooxidative destruction of polyurethane films.
CICECO University of Aveiro Campus Universitário de Santiago 3810 193 Aveiro Portugal
Latvian State Institute of Wood Chemistry Dzerbenes Str 27 LV 1006 Riga Latvia
See more in PubMed
Cheng F., Brewer C.E. Producing jet fuel from biomass lignin: Potential pathways to alkyl-benzenes and cycloalkanes. Renew. Sustain. Energy Rev. 2017;72:673–722. doi: 10.1016/j.rser.2017.01.030. DOI
Hou Q., Ju M., Li W., Liu L., Chen Y., Yang Q., Hou Q., Ju M., Li W., Liu L., et al. Pretreatment of Lignocellulosic Biomass with Ionic Liquids and Ionic Liquid-Based Solvent Systems. Molecules. 2017;22:490. doi: 10.3390/molecules22030490. PubMed DOI PMC
Kai D., Tan M.J., Chee P.L., Chua Y.K., Yap Y.L., Loh X.J. Towards lignin-based functional materials in a sustainable world. Green Chem. 2016;18:1175–1200. doi: 10.1039/C5GC02616D. DOI
Luterbacher J.S., Martin Alonso D., Dumesic J.A. Targeted chemical upgrading of lignocellulosic biomass to platform molecules. Green Chem. 2014;16:4816–4838. doi: 10.1039/C4GC01160K. DOI
Ragauskas A.J., Beckham G.T., Biddy M.J., Chandra R., Chen F., Davis M.F., Davison B.H., Dixon R.A., Gilna P., Keller M., et al. Lignin valorization: improving lignin processing in the biorefinery. Science. 2014;344:1246843. doi: 10.1126/science.1246843. PubMed DOI
Hu J., Zhang Q., Lee D.-J. Kraft lignin biorefinery: A perspective. Bioresour. Technol. 2018;247:1181–1183. doi: 10.1016/j.biortech.2017.08.169. PubMed DOI
Boerjan W., Ralph J., Baucher M. L IGNIN B IOSYNTHESIS. Annu. Rev. Plant Biol. 2003;54:519–546. doi: 10.1146/annurev.arplant.54.031902.134938. PubMed DOI
Boeriu C.G., Bravo D., Gosselink R.J.A., van Dam J.E.G. Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind. Crops Prod. 2004;20:205–218. doi: 10.1016/j.indcrop.2004.04.022. DOI
Vlaminck L., Lingier S., Hufendiek A., Du Prez F.E. Lignin inspired phenolic polyethers synthesized via ADMET: Systematic structure-property investigation. Eur. Polym. J. 2017;95:503–513. doi: 10.1016/j.eurpolymj.2017.08.042. DOI
Vinardell M.P., Ugartondo V., Mitjans M. Potential applications of antioxidant lignins from different sources. Ind. Crops Prod. 2008;27:220–223. doi: 10.1016/j.indcrop.2007.07.011. DOI
UGARTONDO V., MITJANS M., VINARDELL M. Comparative antioxidant and cytotoxic effects of lignins from different sources. Bioresour. Technol. 2008;99:6683–6687. doi: 10.1016/j.biortech.2007.11.038. PubMed DOI
Bertini F., Canetti M., Cacciamani A., Elegir G., Orlandi M., Zoia L. Effect of ligno-derivatives on thermal properties and degradation behavior of poly(3-hydroxybutyrate)-based biocomposites. Polym. Degrad. Stab. 2012;97:1979–1987. doi: 10.1016/j.polymdegradstab.2012.03.009. DOI
Domenek S., Louaifi A., Guinault A., Baumberger S. Potential of Lignins as Antioxidant Additive in Active Biodegradable Packaging Materials. J. Polym. Environ. 2013;21:692–701. doi: 10.1007/s10924-013-0570-6. DOI
CATIGNANI G.L., CARTER M.E. Antioxidant Properties of Lignin. J. Food Sci. 1982;47:1745. doi: 10.1111/j.1365-2621.1982.tb05029.x. DOI
Qazi S., Li D., Briens C., Berruti F., Abou-Zaid M., Qazi S.S., Li D., Briens C., Berruti F., Abou-Zaid M.M. Antioxidant Activity of the Lignins Derived from Fluidized-Bed Fast Pyrolysis. Molecules. 2017;22:372. doi: 10.3390/molecules22030372. PubMed DOI PMC
Morandim-Giannetti A.A., Agnelli J.A.M., Lanças B.Z., Magnabosco R., Casarin S.A., Bettini S.H.P. Lignin as additive in polypropylene/coir composites: Thermal, mechanical and morphological properties. Carbohydr. Polym. 2012;87:2563–2568. doi: 10.1016/j.carbpol.2011.11.041. DOI
Fernandes D.M., Winkler Hechenleitner A.A., Job A.E., Radovanocic E., Gómez Pineda E.A. Thermal and photochemical stability of poly(vinyl alcohol)/modified lignin blends. Polym. Degrad. Stab. 2006;91:1192–1201. doi: 10.1016/j.polymdegradstab.2005.05.024. DOI
Canetti M., Bertini F., De Chirico A., Audisio G. Thermal degradation behaviour of isotactic polypropylene blended with lignin. Polym. Degrad. Stab. 2006;91:494–498. doi: 10.1016/j.polymdegradstab.2005.01.052. DOI
Schmidt J.A., Rye C.S., Gurnagul N. Lignin inhibits autoxidative degradation of cellulose. Polym. Degrad. Stab. 1995;49:291–297. doi: 10.1016/0141-3910(95)87011-3. DOI
Barclay L.R.C., Xi F., Norris J.Q. Antioxidant Properties of Phenolic Lignin Model Compounds. J. Wood Chem. Technol. 1997;17:73–90. doi: 10.1080/02773819708003119. DOI
Gregorová A., Cibulková Z., Košíková B., Šimon P. Stabilization effect of lignin in polypropylene and recycled polypropylene. Polym. Degrad. Stab. 2005;89:553–558. doi: 10.1016/j.polymdegradstab.2005.02.007. DOI
Domínguez-Robles J., Tamminen T., Liitiä T., Peresin M.S., Rodríguez A., Jääskeläinen A.-S. Aqueous acetone fractionation of kraft, organosolv and soda lignins. Int. J. Biol. Macromol. 2018;106:979–987. doi: 10.1016/j.ijbiomac.2017.08.102. PubMed DOI
Park S.Y., Kim J.-Y., Youn H.J., Choi J.W. Fractionation of lignin macromolecules by sequential organic solvents systems and their characterization for further valuable applications. Int. J. Biol. Macromol. 2018;106:793–802. doi: 10.1016/j.ijbiomac.2017.08.069. PubMed DOI
Brodin I., Sjöholm E., Gellerstedt G. Kraft lignin as feedstock for chemical products: The effects of membrane filtration. Holzforschung. 2009;63:290–297. doi: 10.1515/HF.2009.049. DOI
Boeriu C.G., Fiţigău F.I., Gosselink R.J.A., Frissen A.E., Stoutjesdijk J., Peter F. Fractionation of five technical lignins by selective extraction in green solvents and characterisation of isolated fractions. Ind. Crops Prod. 2014;62:481–490. doi: 10.1016/j.indcrop.2014.09.019. DOI
Thring R.W., Griffin S.L. The heterogeneity of two Canadian kraft lignins. Can. J. Chem. 1995;73:629–634. doi: 10.1139/v95-081. DOI
Ropponen J., Räsänen L., Rovio S., Ohra-aho T., Liitiä T., Mikkonen H., van de Pas D., Tamminen T. Solvent extraction as a means of preparing homogeneous lignin fractions. Holzforschung. 2011;65:543–549. doi: 10.1515/hf.2011.089. DOI
Gosselink R.J.A., van Dam J.E.G., de Jong E., Scott E.L., Sanders J.P.M., Li J., Gellerstedt G. Fractionation, analysis, and PCA modeling of properties of four technical lignins for prediction of their application potential in binders. Holzforschung. 2010;64:193–200. doi: 10.1515/hf.2010.023. DOI
Li H., McDonald A.G. Fractionation and characterization of industrial lignins. Ind. Crops Prod. 2014;62:67–76. doi: 10.1016/j.indcrop.2014.08.013. DOI
Pouteau C., Dole P., Cathala B., Averous L., Boquillon N. Antioxidant properties of lignin in polypropylene. Polym. Degrad. Stab. 2003;81:9–18. doi: 10.1016/S0141-3910(03)00057-0. DOI
Pouteau C., Cathala B., Dole P., Kurek B., Monties B. Structural modification of Kraft lignin after acid treatment: characterisation of the apolar extracts and influence on the antioxidant properties in polypropylene. Ind. Crops Prod. 2005;21:101–108. doi: 10.1016/j.indcrop.2004.01.003. DOI
Jääskeläinen A.-S., Liitiä T., Mikkelson A., Tamminen T. Aqueous organic solvent fractionation as means to improve lignin homogeneity and purity. Ind. Crops Prod. 2017;103:51–58. doi: 10.1016/j.indcrop.2017.03.039. DOI
Arshanitsa A., Ponomarenko J., Dizhbite T., Andersone A., Gosselink R.J.A., van der Putten J., Lauberts M., Telysheva G. Fractionation of technical lignins as a tool for improvement of their antioxidant properties. J. Anal. Appl. Pyrolysis. 2013;103:78–85. doi: 10.1016/j.jaap.2012.12.023. DOI
Ponomarenko J., Dizhbite T., Lauberts M., Viksna A., Dobele G., Bikovens O., Telysheva G. Characterization of Softwood and Hardwood LignoBoost Kraft Lignins with Emphasis on their Antioxidant Activity. BioResources. 2014;9:2051–2068. doi: 10.15376/biores.9.2.2051-2068. DOI
An L., Wang G., Jia H., Liu C., Sui W., Si C. Fractionation of enzymatic hydrolysis lignin by sequential extraction for enhancing antioxidant performance. Int. J. Biol. Macromol. 2017;99:674–681. doi: 10.1016/j.ijbiomac.2017.03.015. PubMed DOI
Brunow G., Kilpeläinen I., Sipilä J., Syrjänen K., Karhunen P., Setälä H., Rummakko P. Lignin and Lignan Biosynthesis. American Chemical Society; Washington, DC, USA: 1998. Oxidative Coupling of Phenols and the Biosynthesis of Lignin; pp. 131–147.
Önnerud H., Gellerstedt G. Inhomogeneities in the Chemical Structure of Hardwood Lignins. Holzforschung. 2003;57:255–265. doi: 10.1515/HF.2003.039. DOI
Pan X., Kadla J.F., Ehara K., Gilkes N., Saddler J.N. Organosolv Ethanol Lignin from Hybrid Poplar as a Radical Scavenger: Relationship between Lignin Structure, Extraction Conditions, and Antioxidant Activity. J. Agric. Food Chem. 2006;54:5806–5813. doi: 10.1021/jf0605392. PubMed DOI
Anouar E., Košinová P., Kozlowski D., Mokrini R., Duroux J.L., Trouillas P. New aspects of the antioxidant properties of phenolic acids: a combined theoretical and experimental approach. Phys. Chem. Chem. Phys. 2009;11:7659. doi: 10.1039/b904402g. PubMed DOI
Anouar E., Calliste C.A., Košinová P., Di Meo F., Duroux J.L., Champavier Y., Marakchi K., Trouillas P. Free Radical Scavenging Properties of Guaiacol Oligomers: A Combined Experimental and Quantum Study of the Guaiacyl-Moiety Role. J. Phys. Chem. A. 2009;113:13881–13891. doi: 10.1021/jp906285b. PubMed DOI
Di Meo F., Lemaur V., Cornil J., Lazzaroni R., Duroux J.-L., Olivier Y., Trouillas P. Free Radical Scavenging by Natural Polyphenols: Atom versus Electron Transfer. J. Phys. Chem. A. 2013;117:2082–2092. doi: 10.1021/jp3116319. PubMed DOI
Setzer W.N. Lignin-derived oak phenolics: a theoretical examination of additional potential health benefits of red wine. J. Mol. Model. 2011;17:1841–1845. doi: 10.1007/s00894-010-0893-3. PubMed DOI
Kjällstrand J., Petersson G. Phenolic antioxidants in wood smoke. Sci. Total Environ. 2001;277:69–75. doi: 10.1016/S0048-9697(00)00863-9. PubMed DOI
Kozlowski D., Trouillas P., Calliste C., Marsal P., Lazzaroni R., Duroux J.-L. Density Functional Theory Study of the Conformational, Electronic, and Antioxidant Properties of Natural Chalcones. J. Phys. Chem. A. 2007;111:1138–1145. doi: 10.1021/jp066496+. PubMed DOI
Kozlowski D., Marsal P., Steel M., Mokrini R., Duroux J.-L., Lazzaroni R., Trouillas P. Theoretical Investigation of the Formation of a New Series of Antioxidant Depsides from the Radiolysis of Flavonoid Compounds. Radiat. Res. 2007;168:243–252. doi: 10.1667/RR0824.1. PubMed DOI
Calliste C.A., Kozlowski D., Duroux J.L., Champavier Y., Chulia A.J., Trouillas P. A new antioxidant from wild nutmeg. Food Chem. 2010;118:489–496. doi: 10.1016/j.foodchem.2009.05.010. DOI
Bortolomeazzi R., Verardo G., Liessi A., Callea A. Formation of dehydrodiisoeugenol and dehydrodieugenol from the reaction of isoeugenol and eugenol with DPPH radical and their role in the radical scavenging activity. Food Chem. 2010;118:256–265. doi: 10.1016/j.foodchem.2009.04.115. DOI
Ragnar M., Lindgren C.T., Nilvebrant N.-O. pKa-Values of Guaiacyl and Syringyl Phenols Related to Lignin. J. Wood Chem. Technol. 2000;20:277–305. doi: 10.1080/02773810009349637. DOI
Rived F., Rosés M., Bosch E. Dissociation constants of neutral and charged acids in methyl alcohol. The acid strength resolution. Anal. Chim. Acta. 1998;374:309–324. doi: 10.1016/S0003-2670(98)00418-8. DOI
Stella A.O., Maria Z.T., Anastasios P.V., Evangelos G.B. Structure−DPPH• Scavenging Activity Relationships: Parallel Study of Catechol and Guaiacol Acid Derivatives. J. Agric. Food Chem. 2006;54:5763–5768. PubMed
Villaño D., Fernández-Pachón M.S., Moyá M.L., Troncoso A.M., García-Parrilla M.C. Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta. 2007;71:230–235. doi: 10.1016/j.talanta.2006.03.050. PubMed DOI
Kanitskaja L.V., Medvedeva S.A., Ivanova S.Z., Kushnarev D.F., Ri B. 1H NMR spectroscopy as a method for the identification of hydroxyl-containing lignin fragments. Khimija Drev. 1987;6:3–10.
Li S., Lundquist K. A new method for the analysis of phenolic groups in lignins by ʹH NMR spectrometry. Nord. Pulp Pap. Res. J. 1994;9:191–195. doi: 10.3183/npprj-1994-09-03-p191-195. DOI
Irganox® 1010. [(accessed on 5 April 2019)]; Available online: https://worldaccount.basf.com/en_GB/welcome.html.
Chattopadhyay D.K., Webster D.C. Thermal stability and flame retardancy of polyurethanes. Prog. Polym. Sci. 2009;34:1068–1133. doi: 10.1016/j.progpolymsci.2009.06.002. DOI
Mottern H.O. A New Vanillin Synthesis. J. Am. Chem. Soc. 1934;56:2107–2108. doi: 10.1021/ja01325a033. DOI
Rab M.Z. The synthesis of lignin models, containing.- β-ether bond. For. J. 1968;6:120–123. (In Russian)
Erdtman H., Leopold B., Linderholm H., Kainulainen A., Halonen A., Pulkkinen E. Aromatic Keto- and Hydroxy-polyethers as Lignin Models. II. Acta Chem. Scand. 1949;3:1358–1374. doi: 10.3891/acta.chem.scand.03-1358. DOI
Zakis G.F. Functional Analysis of Lignins and Their Derivatives. TAPPI Press; Atlanta, GA, USA: 1994.
Abächerli Alfred D.F. Method for Preparing Alkaline Solutions Containing Aromatic Polymers 1998. 6,239,198. U.S. Patent. 1998 Mar 20;
Arshanitsa A., Krumina L., Telysheva G., Dizhbite T. Exploring the application potential of incompletely soluble organosolv lignin as a macromonomer for polyurethane synthesis. Ind. Crops Prod. 2016;92:1–12. doi: 10.1016/j.indcrop.2016.07.050. DOI
Trouillas P., Marsal P., Siri D., Lazzaroni R., Duroux J.-L. A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: The specificity of the 3-OH site. Food Chem. 2006;97:679–688. doi: 10.1016/j.foodchem.2005.05.042. DOI
Trouillas P., Marsal P., Svobodová A., Vostálová J., Gažák R., Hrbáč J., Sedmera P., Křen V., Lazzaroni R., Duroux J.-L., et al. Mechanism of the Antioxidant Action of Silybin and 2,3-Dehydrosilybin Flavonolignans: A Joint Experimental and Theoretical Study. J. Phys. Chem. A. 2008;112:1054–1063. doi: 10.1021/jp075814h. PubMed DOI
Gaussian 09. Gausian, Inc.; Wallingford, CT, USA: 2010.
Baltrušaitytė V., Venskutonis P.R., Čeksterytė V. Radical scavenging activity of different floral origin honey and beebread phenolic extracts. Food Chem. 2007;101:502–514. doi: 10.1016/j.foodchem.2006.02.007. DOI
Ringena O., Lebioda S., Lehnen R., Saake B. Size-exclusion chromatography of technical lignins in dimethyl sulfoxide/water and dimethylacetamide. J. Chromatogr. A. 2006;1102:154–163. doi: 10.1016/j.chroma.2005.10.037. PubMed DOI
Evtuguin D.V., Neto C.P., Silva A.M., Domingues P.M., Amado F.M., Robert D., Faix O. Comprehensive study on the chemical structure of dioxane lignin from plantation Eucalyptus globulus wood. J. Agric. Food Chem. 2001;49:4252–4261. doi: 10.1021/jf010315d. PubMed DOI
Caglioti L. Reduction of Ketones by Use of the Tosylhydrazone Derivatives: Androstan-17 b-ol. Org. Synth. 1972;52:122.
Oxidative Stress Evaluation in Ischemia Reperfusion Models: Characteristics, Limits and Perspectives