• This record comes from PubMed

Lignin Modification Supported by DFT-Based Theoretical Study as a Way to Produce Competitive Natural Antioxidants

. 2019 May 09 ; 24 (9) : . [epub] 20190509

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
OSMOZE The Latvian-France collaboration programme "OSMOZE"
LigProBK The Latvian State Institute of Wood Chemistry Bioeconomy grant "LigProBK"
P208/12/G016 Czech Science Foundation
Project LO1305 The Ministry of Education, Youth and Sports of the Czech Republic
IGA_PrF_2017_028 The student project IGA_PrF_2017_028 of Palacky University
FCT Ref. UID/CTM/50011/2013 The CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679, financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement

Links

PubMed 31075868
PubMed Central PMC6539611
DOI 10.3390/molecules24091794
PII: molecules24091794
Knihovny.cz E-resources

The valorization of lignins as renewable aromatic feedstock is of utmost importance in terms of the use of sustainable resources. This study provides a deductive approach towards market-oriented lignin-derived antioxidants by ascertaining the direct effect of different structural features of lignin on the reactivity of its phenolic OH groups in the radical scavenging reactions. The antioxidant activity of a series of compounds, modeling lignin structural units, was experimentally characterized and rationalized, using thermodynamic descriptors. The calculated O-H bond dissociation enthalpies (BDE) of characteristic lignin subunits were used to predict the modification pathways of technical lignins. The last ones were isolated by soda delignification from different biomass sources and their oligomeric fractions were studied as a raw material for modification and production of optimized antioxidants. These were characterized in terms of chemical structure, molecular weight distribution, content of the functional groups, and the antioxidant activity. The developed approach for the targeted modification of lignins allowed the products competitive with two commercial synthetic phenolic antioxidants in both free radical scavenging and stabilization of thermooxidative destruction of polyurethane films.

See more in PubMed

Cheng F., Brewer C.E. Producing jet fuel from biomass lignin: Potential pathways to alkyl-benzenes and cycloalkanes. Renew. Sustain. Energy Rev. 2017;72:673–722. doi: 10.1016/j.rser.2017.01.030. DOI

Hou Q., Ju M., Li W., Liu L., Chen Y., Yang Q., Hou Q., Ju M., Li W., Liu L., et al. Pretreatment of Lignocellulosic Biomass with Ionic Liquids and Ionic Liquid-Based Solvent Systems. Molecules. 2017;22:490. doi: 10.3390/molecules22030490. PubMed DOI PMC

Kai D., Tan M.J., Chee P.L., Chua Y.K., Yap Y.L., Loh X.J. Towards lignin-based functional materials in a sustainable world. Green Chem. 2016;18:1175–1200. doi: 10.1039/C5GC02616D. DOI

Luterbacher J.S., Martin Alonso D., Dumesic J.A. Targeted chemical upgrading of lignocellulosic biomass to platform molecules. Green Chem. 2014;16:4816–4838. doi: 10.1039/C4GC01160K. DOI

Ragauskas A.J., Beckham G.T., Biddy M.J., Chandra R., Chen F., Davis M.F., Davison B.H., Dixon R.A., Gilna P., Keller M., et al. Lignin valorization: improving lignin processing in the biorefinery. Science. 2014;344:1246843. doi: 10.1126/science.1246843. PubMed DOI

Hu J., Zhang Q., Lee D.-J. Kraft lignin biorefinery: A perspective. Bioresour. Technol. 2018;247:1181–1183. doi: 10.1016/j.biortech.2017.08.169. PubMed DOI

Boerjan W., Ralph J., Baucher M. L IGNIN B IOSYNTHESIS. Annu. Rev. Plant Biol. 2003;54:519–546. doi: 10.1146/annurev.arplant.54.031902.134938. PubMed DOI

Boeriu C.G., Bravo D., Gosselink R.J.A., van Dam J.E.G. Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind. Crops Prod. 2004;20:205–218. doi: 10.1016/j.indcrop.2004.04.022. DOI

Vlaminck L., Lingier S., Hufendiek A., Du Prez F.E. Lignin inspired phenolic polyethers synthesized via ADMET: Systematic structure-property investigation. Eur. Polym. J. 2017;95:503–513. doi: 10.1016/j.eurpolymj.2017.08.042. DOI

Vinardell M.P., Ugartondo V., Mitjans M. Potential applications of antioxidant lignins from different sources. Ind. Crops Prod. 2008;27:220–223. doi: 10.1016/j.indcrop.2007.07.011. DOI

UGARTONDO V., MITJANS M., VINARDELL M. Comparative antioxidant and cytotoxic effects of lignins from different sources. Bioresour. Technol. 2008;99:6683–6687. doi: 10.1016/j.biortech.2007.11.038. PubMed DOI

Bertini F., Canetti M., Cacciamani A., Elegir G., Orlandi M., Zoia L. Effect of ligno-derivatives on thermal properties and degradation behavior of poly(3-hydroxybutyrate)-based biocomposites. Polym. Degrad. Stab. 2012;97:1979–1987. doi: 10.1016/j.polymdegradstab.2012.03.009. DOI

Domenek S., Louaifi A., Guinault A., Baumberger S. Potential of Lignins as Antioxidant Additive in Active Biodegradable Packaging Materials. J. Polym. Environ. 2013;21:692–701. doi: 10.1007/s10924-013-0570-6. DOI

CATIGNANI G.L., CARTER M.E. Antioxidant Properties of Lignin. J. Food Sci. 1982;47:1745. doi: 10.1111/j.1365-2621.1982.tb05029.x. DOI

Qazi S., Li D., Briens C., Berruti F., Abou-Zaid M., Qazi S.S., Li D., Briens C., Berruti F., Abou-Zaid M.M. Antioxidant Activity of the Lignins Derived from Fluidized-Bed Fast Pyrolysis. Molecules. 2017;22:372. doi: 10.3390/molecules22030372. PubMed DOI PMC

Morandim-Giannetti A.A., Agnelli J.A.M., Lanças B.Z., Magnabosco R., Casarin S.A., Bettini S.H.P. Lignin as additive in polypropylene/coir composites: Thermal, mechanical and morphological properties. Carbohydr. Polym. 2012;87:2563–2568. doi: 10.1016/j.carbpol.2011.11.041. DOI

Fernandes D.M., Winkler Hechenleitner A.A., Job A.E., Radovanocic E., Gómez Pineda E.A. Thermal and photochemical stability of poly(vinyl alcohol)/modified lignin blends. Polym. Degrad. Stab. 2006;91:1192–1201. doi: 10.1016/j.polymdegradstab.2005.05.024. DOI

Canetti M., Bertini F., De Chirico A., Audisio G. Thermal degradation behaviour of isotactic polypropylene blended with lignin. Polym. Degrad. Stab. 2006;91:494–498. doi: 10.1016/j.polymdegradstab.2005.01.052. DOI

Schmidt J.A., Rye C.S., Gurnagul N. Lignin inhibits autoxidative degradation of cellulose. Polym. Degrad. Stab. 1995;49:291–297. doi: 10.1016/0141-3910(95)87011-3. DOI

Barclay L.R.C., Xi F., Norris J.Q. Antioxidant Properties of Phenolic Lignin Model Compounds. J. Wood Chem. Technol. 1997;17:73–90. doi: 10.1080/02773819708003119. DOI

Gregorová A., Cibulková Z., Košíková B., Šimon P. Stabilization effect of lignin in polypropylene and recycled polypropylene. Polym. Degrad. Stab. 2005;89:553–558. doi: 10.1016/j.polymdegradstab.2005.02.007. DOI

Domínguez-Robles J., Tamminen T., Liitiä T., Peresin M.S., Rodríguez A., Jääskeläinen A.-S. Aqueous acetone fractionation of kraft, organosolv and soda lignins. Int. J. Biol. Macromol. 2018;106:979–987. doi: 10.1016/j.ijbiomac.2017.08.102. PubMed DOI

Park S.Y., Kim J.-Y., Youn H.J., Choi J.W. Fractionation of lignin macromolecules by sequential organic solvents systems and their characterization for further valuable applications. Int. J. Biol. Macromol. 2018;106:793–802. doi: 10.1016/j.ijbiomac.2017.08.069. PubMed DOI

Brodin I., Sjöholm E., Gellerstedt G. Kraft lignin as feedstock for chemical products: The effects of membrane filtration. Holzforschung. 2009;63:290–297. doi: 10.1515/HF.2009.049. DOI

Boeriu C.G., Fiţigău F.I., Gosselink R.J.A., Frissen A.E., Stoutjesdijk J., Peter F. Fractionation of five technical lignins by selective extraction in green solvents and characterisation of isolated fractions. Ind. Crops Prod. 2014;62:481–490. doi: 10.1016/j.indcrop.2014.09.019. DOI

Thring R.W., Griffin S.L. The heterogeneity of two Canadian kraft lignins. Can. J. Chem. 1995;73:629–634. doi: 10.1139/v95-081. DOI

Ropponen J., Räsänen L., Rovio S., Ohra-aho T., Liitiä T., Mikkonen H., van de Pas D., Tamminen T. Solvent extraction as a means of preparing homogeneous lignin fractions. Holzforschung. 2011;65:543–549. doi: 10.1515/hf.2011.089. DOI

Gosselink R.J.A., van Dam J.E.G., de Jong E., Scott E.L., Sanders J.P.M., Li J., Gellerstedt G. Fractionation, analysis, and PCA modeling of properties of four technical lignins for prediction of their application potential in binders. Holzforschung. 2010;64:193–200. doi: 10.1515/hf.2010.023. DOI

Li H., McDonald A.G. Fractionation and characterization of industrial lignins. Ind. Crops Prod. 2014;62:67–76. doi: 10.1016/j.indcrop.2014.08.013. DOI

Pouteau C., Dole P., Cathala B., Averous L., Boquillon N. Antioxidant properties of lignin in polypropylene. Polym. Degrad. Stab. 2003;81:9–18. doi: 10.1016/S0141-3910(03)00057-0. DOI

Pouteau C., Cathala B., Dole P., Kurek B., Monties B. Structural modification of Kraft lignin after acid treatment: characterisation of the apolar extracts and influence on the antioxidant properties in polypropylene. Ind. Crops Prod. 2005;21:101–108. doi: 10.1016/j.indcrop.2004.01.003. DOI

Jääskeläinen A.-S., Liitiä T., Mikkelson A., Tamminen T. Aqueous organic solvent fractionation as means to improve lignin homogeneity and purity. Ind. Crops Prod. 2017;103:51–58. doi: 10.1016/j.indcrop.2017.03.039. DOI

Arshanitsa A., Ponomarenko J., Dizhbite T., Andersone A., Gosselink R.J.A., van der Putten J., Lauberts M., Telysheva G. Fractionation of technical lignins as a tool for improvement of their antioxidant properties. J. Anal. Appl. Pyrolysis. 2013;103:78–85. doi: 10.1016/j.jaap.2012.12.023. DOI

Ponomarenko J., Dizhbite T., Lauberts M., Viksna A., Dobele G., Bikovens O., Telysheva G. Characterization of Softwood and Hardwood LignoBoost Kraft Lignins with Emphasis on their Antioxidant Activity. BioResources. 2014;9:2051–2068. doi: 10.15376/biores.9.2.2051-2068. DOI

An L., Wang G., Jia H., Liu C., Sui W., Si C. Fractionation of enzymatic hydrolysis lignin by sequential extraction for enhancing antioxidant performance. Int. J. Biol. Macromol. 2017;99:674–681. doi: 10.1016/j.ijbiomac.2017.03.015. PubMed DOI

Brunow G., Kilpeläinen I., Sipilä J., Syrjänen K., Karhunen P., Setälä H., Rummakko P. Lignin and Lignan Biosynthesis. American Chemical Society; Washington, DC, USA: 1998. Oxidative Coupling of Phenols and the Biosynthesis of Lignin; pp. 131–147.

Önnerud H., Gellerstedt G. Inhomogeneities in the Chemical Structure of Hardwood Lignins. Holzforschung. 2003;57:255–265. doi: 10.1515/HF.2003.039. DOI

Pan X., Kadla J.F., Ehara K., Gilkes N., Saddler J.N. Organosolv Ethanol Lignin from Hybrid Poplar as a Radical Scavenger: Relationship between Lignin Structure, Extraction Conditions, and Antioxidant Activity. J. Agric. Food Chem. 2006;54:5806–5813. doi: 10.1021/jf0605392. PubMed DOI

Anouar E., Košinová P., Kozlowski D., Mokrini R., Duroux J.L., Trouillas P. New aspects of the antioxidant properties of phenolic acids: a combined theoretical and experimental approach. Phys. Chem. Chem. Phys. 2009;11:7659. doi: 10.1039/b904402g. PubMed DOI

Anouar E., Calliste C.A., Košinová P., Di Meo F., Duroux J.L., Champavier Y., Marakchi K., Trouillas P. Free Radical Scavenging Properties of Guaiacol Oligomers: A Combined Experimental and Quantum Study of the Guaiacyl-Moiety Role. J. Phys. Chem. A. 2009;113:13881–13891. doi: 10.1021/jp906285b. PubMed DOI

Di Meo F., Lemaur V., Cornil J., Lazzaroni R., Duroux J.-L., Olivier Y., Trouillas P. Free Radical Scavenging by Natural Polyphenols: Atom versus Electron Transfer. J. Phys. Chem. A. 2013;117:2082–2092. doi: 10.1021/jp3116319. PubMed DOI

Setzer W.N. Lignin-derived oak phenolics: a theoretical examination of additional potential health benefits of red wine. J. Mol. Model. 2011;17:1841–1845. doi: 10.1007/s00894-010-0893-3. PubMed DOI

Kjällstrand J., Petersson G. Phenolic antioxidants in wood smoke. Sci. Total Environ. 2001;277:69–75. doi: 10.1016/S0048-9697(00)00863-9. PubMed DOI

Kozlowski D., Trouillas P., Calliste C., Marsal P., Lazzaroni R., Duroux J.-L. Density Functional Theory Study of the Conformational, Electronic, and Antioxidant Properties of Natural Chalcones. J. Phys. Chem. A. 2007;111:1138–1145. doi: 10.1021/jp066496+. PubMed DOI

Kozlowski D., Marsal P., Steel M., Mokrini R., Duroux J.-L., Lazzaroni R., Trouillas P. Theoretical Investigation of the Formation of a New Series of Antioxidant Depsides from the Radiolysis of Flavonoid Compounds. Radiat. Res. 2007;168:243–252. doi: 10.1667/RR0824.1. PubMed DOI

Calliste C.A., Kozlowski D., Duroux J.L., Champavier Y., Chulia A.J., Trouillas P. A new antioxidant from wild nutmeg. Food Chem. 2010;118:489–496. doi: 10.1016/j.foodchem.2009.05.010. DOI

Bortolomeazzi R., Verardo G., Liessi A., Callea A. Formation of dehydrodiisoeugenol and dehydrodieugenol from the reaction of isoeugenol and eugenol with DPPH radical and their role in the radical scavenging activity. Food Chem. 2010;118:256–265. doi: 10.1016/j.foodchem.2009.04.115. DOI

Ragnar M., Lindgren C.T., Nilvebrant N.-O. pKa-Values of Guaiacyl and Syringyl Phenols Related to Lignin. J. Wood Chem. Technol. 2000;20:277–305. doi: 10.1080/02773810009349637. DOI

Rived F., Rosés M., Bosch E. Dissociation constants of neutral and charged acids in methyl alcohol. The acid strength resolution. Anal. Chim. Acta. 1998;374:309–324. doi: 10.1016/S0003-2670(98)00418-8. DOI

Stella A.O., Maria Z.T., Anastasios P.V., Evangelos G.B. Structure−DPPH• Scavenging Activity Relationships:  Parallel Study of Catechol and Guaiacol Acid Derivatives. J. Agric. Food Chem. 2006;54:5763–5768. PubMed

Villaño D., Fernández-Pachón M.S., Moyá M.L., Troncoso A.M., García-Parrilla M.C. Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta. 2007;71:230–235. doi: 10.1016/j.talanta.2006.03.050. PubMed DOI

Kanitskaja L.V., Medvedeva S.A., Ivanova S.Z., Kushnarev D.F., Ri B. 1H NMR spectroscopy as a method for the identification of hydroxyl-containing lignin fragments. Khimija Drev. 1987;6:3–10.

Li S., Lundquist K. A new method for the analysis of phenolic groups in lignins by ʹH NMR spectrometry. Nord. Pulp Pap. Res. J. 1994;9:191–195. doi: 10.3183/npprj-1994-09-03-p191-195. DOI

Irganox® 1010. [(accessed on 5 April 2019)]; Available online: https://worldaccount.basf.com/en_GB/welcome.html.

Chattopadhyay D.K., Webster D.C. Thermal stability and flame retardancy of polyurethanes. Prog. Polym. Sci. 2009;34:1068–1133. doi: 10.1016/j.progpolymsci.2009.06.002. DOI

Mottern H.O. A New Vanillin Synthesis. J. Am. Chem. Soc. 1934;56:2107–2108. doi: 10.1021/ja01325a033. DOI

Rab M.Z. The synthesis of lignin models, containing.- β-ether bond. For. J. 1968;6:120–123. (In Russian)

Erdtman H., Leopold B., Linderholm H., Kainulainen A., Halonen A., Pulkkinen E. Aromatic Keto- and Hydroxy-polyethers as Lignin Models. II. Acta Chem. Scand. 1949;3:1358–1374. doi: 10.3891/acta.chem.scand.03-1358. DOI

Zakis G.F. Functional Analysis of Lignins and Their Derivatives. TAPPI Press; Atlanta, GA, USA: 1994.

Abächerli Alfred D.F. Method for Preparing Alkaline Solutions Containing Aromatic Polymers 1998. 6,239,198. U.S. Patent. 1998 Mar 20;

Arshanitsa A., Krumina L., Telysheva G., Dizhbite T. Exploring the application potential of incompletely soluble organosolv lignin as a macromonomer for polyurethane synthesis. Ind. Crops Prod. 2016;92:1–12. doi: 10.1016/j.indcrop.2016.07.050. DOI

Trouillas P., Marsal P., Siri D., Lazzaroni R., Duroux J.-L. A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: The specificity of the 3-OH site. Food Chem. 2006;97:679–688. doi: 10.1016/j.foodchem.2005.05.042. DOI

Trouillas P., Marsal P., Svobodová A., Vostálová J., Gažák R., Hrbáč J., Sedmera P., Křen V., Lazzaroni R., Duroux J.-L., et al. Mechanism of the Antioxidant Action of Silybin and 2,3-Dehydrosilybin Flavonolignans: A Joint Experimental and Theoretical Study. J. Phys. Chem. A. 2008;112:1054–1063. doi: 10.1021/jp075814h. PubMed DOI

Gaussian 09. Gausian, Inc.; Wallingford, CT, USA: 2010.

Baltrušaitytė V., Venskutonis P.R., Čeksterytė V. Radical scavenging activity of different floral origin honey and beebread phenolic extracts. Food Chem. 2007;101:502–514. doi: 10.1016/j.foodchem.2006.02.007. DOI

Ringena O., Lebioda S., Lehnen R., Saake B. Size-exclusion chromatography of technical lignins in dimethyl sulfoxide/water and dimethylacetamide. J. Chromatogr. A. 2006;1102:154–163. doi: 10.1016/j.chroma.2005.10.037. PubMed DOI

Evtuguin D.V., Neto C.P., Silva A.M., Domingues P.M., Amado F.M., Robert D., Faix O. Comprehensive study on the chemical structure of dioxane lignin from plantation Eucalyptus globulus wood. J. Agric. Food Chem. 2001;49:4252–4261. doi: 10.1021/jf010315d. PubMed DOI

Caglioti L. Reduction of Ketones by Use of the Tosylhydrazone Derivatives: Androstan-17 b-ol. Org. Synth. 1972;52:122.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...