Oxidative Stress Evaluation in Ischemia Reperfusion Models: Characteristics, Limits and Perspectives
Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
33673423
PubMed Central
PMC7956779
DOI
10.3390/ijms22052366
PII: ijms22052366
Knihovny.cz E-resources
- Keywords
- ROS, animal models, antioxidant factors, ischemia-reperfusion injury, molecular modeling models, organoids, oxidative stress,
- MeSH
- Cell Line MeSH
- Humans MeSH
- Disease Models, Animal * MeSH
- Models, Molecular MeSH
- Oxidative Stress * MeSH
- Reactive Oxygen Species MeSH
- Reperfusion Injury metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Reactive Oxygen Species MeSH
Ischemia reperfusion injury is a complex process consisting of a seemingly chaotic but actually organized and compartmentalized shutdown of cell function, of which oxidative stress is a key component. Studying oxidative stress, which results in an imbalance between reactive oxygen species (ROS) production and antioxidant defense activity, is a multi-faceted issue, particularly considering the double function of ROS, assuming roles as physiological intracellular signals and as mediators of cellular component damage. Herein, we propose a comprehensive overview of the tools available to explore oxidative stress, particularly in the study of ischemia reperfusion. Applying chemistry as well as biology, we present the different models currently developed to study oxidative stress, spanning the vitro and the silico, discussing the advantages and the drawbacks of each set-up, including the issues relating to the use of in vitro hypoxia as a surrogate for ischemia. Having identified the limitations of historical models, we shall study new paradigms, including the use of stem cell-derived organoids, as a bridge between the in vitro and the in vivo comprising 3D intercellular interactions in vivo and versatile pathway investigations in vitro. We shall conclude this review by distancing ourselves from "wet" biology and reviewing the in silico, computer-based, mathematical modeling, and numerical simulation options: (a) molecular modeling with quantum chemistry and molecular dynamic algorithms, which facilitates the study of molecule-to-molecule interactions, and the integration of a compound in a dynamic environment (the plasma membrane...); (b) integrative systemic models, which can include many facets of complex mechanisms such as oxidative stress or ischemia reperfusion and help to formulate integrated predictions and to enhance understanding of dynamic interaction between pathways.
Faculté de Médecine et de Pharmacie Université de Poitiers F 86000 Poitiers France
FHU SUPORT Survival Optimization in Organ Transplantation F 86000 Poitiers France
INSERM U1082 IRTOMIT F 86000 Poitiers France
INSERM U1248 IPPRITT Université de Limoges F 87000 Limoges France
Laboratoire de Biochimie et Génétique Moléculaire CHU de Limoges F 87000 Limoges France
RCPTM University Palacký of Olomouc 771 47 Olomouc Czech Republic
Service de Biochimie CHU de Poitiers F 86000 Poitiers France
UMR CNRS 7285 IC2MP Team 5 Chemistry Université de Poitiers F 86000 Poitiers France
See more in PubMed
Sies H., Berndt C., Jones D.P. Oxidative Stress. Annu. Rev. Biochem. 2017;86:715–748. doi: 10.1146/annurev-biochem-061516-045037. PubMed DOI
Sies H. Hydrogen Peroxide as a Central Redox Signaling Molecule in Physiological Oxidative Stress: Oxidative Eustress. Redox Biol. 2017;11:613–619. doi: 10.1016/j.redox.2016.12.035. PubMed DOI PMC
Cortese-Krott M.M., Koning A., Kuhnle G.G.C., Nagy P., Bianco C.L., Pasch A., Wink D.A., Fukuto J.M., Jackson A.A., Van Goor H., et al. The Reactive Species Interactome: Evolutionary Emergence, Biological Significance, and Opportunities for Redox Metabolomics and Personalized Medicine. Antioxid. Redox Signal. 2017;27:684–712. doi: 10.1089/ars.2017.7083. PubMed DOI PMC
Martin J.L., Gruszczyk A.V., Beach T.E., Murphy M.P., Saeb-Parsy K. Mitochondrial Mechanisms and Therapeutics in Ischaemia Reperfusion Injury. Pediatr. Nephrol. 2019;34:1167–1174. doi: 10.1007/s00467-018-3984-5. PubMed DOI PMC
Pell V.R., Chouchani E.T., Frezza C., Murphy M.P., Krieg T. Succinate Metabolism: A New Therapeutic Target for Myocardial Reperfusion Injury. Cardiovasc. Res. 2016;111:134–141. doi: 10.1093/cvr/cvw100. PubMed DOI
Pell V.R., Chouchani E.T., Murphy M.P., Brookes P.S., Krieg T. Moving Forwards by Blocking Back-Flow: The Yin and Yang of MI Therapy. Circ. Res. 2016;118:898–906. doi: 10.1161/CIRCRESAHA.115.306569. PubMed DOI PMC
Chouchani E.T., Pell V.R., Gaude E., Aksentijević D., Sundier S.Y., Robb E.L., Logan A., Nadtochiy S.M., Ord E.N.J., Smith A.C., et al. Ischaemic Accumulation of Succinate Controls Reperfusion Injury through Mitochondrial ROS. Nature. 2014;515:431–435. doi: 10.1038/nature13909. PubMed DOI PMC
Zuk A., Bonventre J.V. Acute Kidney Injury. Annu. Rev. Med. 2016;67:293–307. doi: 10.1146/annurev-med-050214-013407. PubMed DOI PMC
Hsu R.K., Hsu C.-Y. The Role of Acute Kidney Injury in Chronic Kidney Disease. Semin. Nephrol. 2016;36:283–292. doi: 10.1016/j.semnephrol.2016.05.005. PubMed DOI PMC
Bon D., Chatauret N., Giraud S., Thuillier R., Favreau F., Hauet T. New Strategies to Optimize Kidney Recovery and Preservation in Transplantation. Nat. Rev. 2012;8:339–347. doi: 10.1038/nrneph.2012.83. PubMed DOI
Favreau F., Petit-Paris I., Hauet T., Dutheil D., Papet Y., Mauco G., Tallineau C. Cyclooxygenase 1-Dependent Production of F2-Isoprostane and Changes in Redox Status during Warm Renal Ischemia-Reperfusion. Free Radic. Biol. Med. 2004;36:1034–1042. doi: 10.1016/j.freeradbiomed.2004.01.010. PubMed DOI
Cadenas E., Davies K.J. Mitochondrial Free Radical Generation, Oxidative Stress, and Aging. Free Radic. Biol. Med. 2000;29:222–230. doi: 10.1016/S0891-5849(00)00317-8. PubMed DOI
Pacher P., Beckman J.S., Liaudet L. Nitric Oxide and Peroxynitrite in Health and Disease. Physiol. Rev. 2007;87:315–424. doi: 10.1152/physrev.00029.2006. PubMed DOI PMC
Liu Y., Fiskum G., Schubert D. Generation of Reactive Oxygen Species by the Mitochondrial Electron Transport Chain. J. Neurochem. 2002;80:780–787. doi: 10.1046/j.0022-3042.2002.00744.x. PubMed DOI
Chen Q., Vazquez E.J., Moghaddas S., Hoppel C.L., Lesnefsky E.J. Production of Reactive Oxygen Species by Mitochondria: Central Role of Complex III. J. Biol. Chem. 2003;278:36027–36031. doi: 10.1074/jbc.M304854200. PubMed DOI
Turrens J.F. Mitochondrial Formation of Reactive Oxygen Species. J. Physiol. 2003;552:335–344. doi: 10.1113/jphysiol.2003.049478. PubMed DOI PMC
Griendling K.K., Sorescu D., Ushio-Fukai M. NAD(P)H Oxidase: Role in Cardiovascular Biology and Disease. Circ. Res. 2000;86:494–501. doi: 10.1161/01.RES.86.5.494. PubMed DOI
Brandes R.P., Weissmann N., Schröder K. NADPH Oxidases in Cardiovascular Disease. Free Radic. Biol. Med. 2010;49:687–706. doi: 10.1016/j.freeradbiomed.2010.04.030. PubMed DOI
Octavia Y., Brunner-La Rocca H.P., Moens A.L. NADPH Oxidase-Dependent Oxidative Stress in the Failing Heart: From Pathogenic Roles to Therapeutic Approach. Free Radic. Biol. Med. 2012;52:291–297. doi: 10.1016/j.freeradbiomed.2011.10.482. PubMed DOI
Chambers D.E., Parks D.A., Patterson G., Roy R., McCord J.M., Yoshida S., Parmley L.F., Downey J.M. Xanthine Oxidase as a Source of Free Radical Damage in Myocardial Ischemia. J. Mol. Cell. Cardiol. 1985;17:145–152. doi: 10.1016/S0022-2828(85)80017-1. PubMed DOI
McCord J.M., Roy R.S., Schaffer S.W. Free Radicals and Myocardial Ischemia. The Role of Xanthine Oxidase. Adv. Myocardiol. 1985;5:183–189. PubMed
Granger D.N., Kvietys P.R. Reperfusion Injury and Reactive Oxygen Species: The Evolution of a Concept. Redox Biol. 2015;6:524–551. doi: 10.1016/j.redox.2015.08.020. PubMed DOI PMC
Halliwell B. Antioxidant Defence Mechanisms: From the Beginning to the End (of the Beginning) Free Radic. Res. 1999;31:261–272. doi: 10.1080/10715769900300841. PubMed DOI
Curin Y., Andriantsitohaina R. Polyphenols as Potential Therapeutical Agents against Cardiovascular Diseases. Pharmacol. Rep. 2005;57:97–107. PubMed
Alechinsky L., Favreau F., Cechova P., Inal S., Faye P.-A., Ory C., Thuillier R., Barrou B., Trouillas P., Guillard J., et al. Tannic Acid Improves Renal Function Recovery after Renal Warm Ischemia-Reperfusion in a Rat Model. Biomolecules. 2020;10:439. doi: 10.3390/biom10030439. PubMed DOI PMC
Soussi D., Danion J., Baulier E., Favreau F., Sauvageon Y., Bossard V., Matillon X., Turpin F., Belgsir E.M., Thuillier R., et al. Vectisol Formulation Enhances Solubility of Resveratrol and Brings Its Benefits to Kidney Transplantation in a Preclinical Porcine Model. Int. J. Mol. Sci. 2019;20:2268. doi: 10.3390/ijms20092268. PubMed DOI PMC
Caillaud M., Chantemargue B., Richard L., Vignaud L., Favreau F., Faye P.-A., Vignoles P., Sturtz F., Trouillas P., Vallat J.-M., et al. Local Low Dose Curcumin Treatment Improves Functional Recovery and Remyelination in a Rat Model of Sciatic Nerve Crush through Inhibition of Oxidative Stress. Neuropharmacology. 2018;139:98–116. doi: 10.1016/j.neuropharm.2018.07.001. PubMed DOI
Melov S. Animal Models of Oxidative Stress, Aging, and Therapeutic Antioxidant Interventions. Int. J. Biochem. Cell Biol. 2002;34:1395–1400. doi: 10.1016/S1357-2725(02)00086-9. PubMed DOI
Held J.M. Redox Systems Biology: Harnessing the Sentinels of the Cysteine Redoxome. Antioxid. Redox Signal. 2020;32:659–676. doi: 10.1089/ars.2019.7725. PubMed DOI PMC
Pillay C.S., Hofmeyr J.-H., Mashamaite L.N., Rohwer J.M. From Top-down to Bottom-up: Computational Modeling Approaches for Cellular Redoxin Networks. Antioxid. Redox Signal. 2013;18:2075–2086. doi: 10.1089/ars.2012.4771. PubMed DOI
Brandes N., Schmitt S., Jakob U. Thiol-Based Redox Switches in Eukaryotic Proteins. Antioxid. Redox Signal. 2009;11:997–1014. doi: 10.1089/ars.2008.2285. PubMed DOI PMC
Tebay L.E., Robertson H., Durant S.T., Vitale S.R., Penning T.M., Dinkova-Kostova A.T., Hayes J.D. Mechanisms of Activation of the Transcription Factor Nrf2 by Redox Stressors, Nutrient Cues, and Energy Status and the Pathways through Which It Attenuates Degenerative Disease. Free Radic. Biol. Med. 2015;88:108–146. doi: 10.1016/j.freeradbiomed.2015.06.021. PubMed DOI PMC
Kurutas E.B. The Importance of Antioxidants Which Play the Role in Cellular Response against Oxidative/Nitrosative Stress: Current State. Nutr. J. 2016;15:71. doi: 10.1186/s12937-016-0186-5. PubMed DOI PMC
Halliwell B. Free Radicals and Antioxidants: Updating a Personal View. Nutr. Rev. 2012;70:257–265. doi: 10.1111/j.1753-4887.2012.00476.x. PubMed DOI
Sies H. Glutathione and Its Role in Cellular Functions. Free Radic. Biol. Med. 1999;27:916–921. doi: 10.1016/S0891-5849(99)00177-X. PubMed DOI
Tanaka K., Ogawa N., Asanuma M. Molecular Basis of 6-Hydroxydopamine-Induced Caspase Activations Due to Increases in Oxidative Stress in the Mouse Striatum. Neurosci. Lett. 2006;410:85–89. doi: 10.1016/j.neulet.2006.08.021. PubMed DOI
Chakraborty S., Stalin S., Das N., Choudhury S.T., Ghosh S., Swarnakar S. The Use of Nano-Quercetin to Arrest Mitochondrial Damage and MMP-9 Upregulation during Prevention of Gastric Inflammation Induced by Ethanol in Rat. Biomaterials. 2012;33:2991–3001. doi: 10.1016/j.biomaterials.2011.12.037. PubMed DOI
Ou S.-Y., Jackson G.M., Jiao X., Chen J., Wu J.-Z., Huang X.-S. Protection against Oxidative Stress in Diabetic Rats by Wheat Bran Feruloyl Oligosaccharides. J. Agric. Food Chem. 2007;55:3191–3195. doi: 10.1021/jf063310v. PubMed DOI
Kim Y.-S., Hwang J.-W., Sung S.-H., Jeon Y.-J., Jeong J.-H., Jeon B.-T., Moon S.-H., Park P.-J. Antioxidant Activity and Protective Effect of Extract of Celosia Cristata L. Flower on Tert-Butyl Hydroperoxide-Induced Oxidative Hepatotoxicity. Food Chem. 2015;168:572–579. doi: 10.1016/j.foodchem.2014.07.106. PubMed DOI
Chatauret N., Favreau F., Giraud S., Thierry A., Rossard L., Le Pape S., Lerman L.O., Hauet T. Diet-Induced Increase in Plasma Oxidized LDL Promotes Early Fibrosis in a Renal Porcine Auto-Transplantation Model. J. Transl. Med. 2014;12:76. doi: 10.1186/1479-5876-12-76. PubMed DOI PMC
Kerforne T., Favreau F., Khalifeh T., Maiga S., Allain G., Thierry A., Dierick M., Baulier E., Steichen C., Hauet T. Hypercholesterolemia-Induced Increase in Plasma Oxidized LDL Abrogated pro Angiogenic Response in Kidney Grafts. J. Transl. Med. 2019;17:26. doi: 10.1186/s12967-018-1764-4. PubMed DOI PMC
Melis N., Thuillier R., Steichen C., Giraud S., Sauvageon Y., Kaminski J., Pelé T., Badet L., Richer J.P., Barrera-Chimal J., et al. Emerging Therapeutic Strategies for Transplantation-Induced Acute Kidney Injury: Protecting the Organelles and the Vascular Bed. Expert Opin. Ther. Targets. 2019;23:495–509. doi: 10.1080/14728222.2019.1609451. PubMed DOI
Giraud S., Favreau F., Chatauret N., Thuillier R., Maiga S., Hauet T. Contribution of Large Pig for Renal Ischemia-Reperfusion and Transplantation Studies: The Preclinical Model. J. Biomed. Biotechnol. 2011;2011:532127. doi: 10.1155/2011/532127. PubMed DOI PMC
Pavlacky J., Polak J. Technical Feasibility and Physiological Relevance of Hypoxic Cell Culture Models. Front. Endocrinol. 2020;11:57. doi: 10.3389/fendo.2020.00057. PubMed DOI PMC
Becker K., Schroecksnadel S., Gostner J., Zaknun C., Schennach H., Uberall F., Fuchs D. Comparison of in Vitro Tests for Antioxidant and Immunomodulatory Capacities of Compounds. Phytomedicine. 2014;21:164–171. doi: 10.1016/j.phymed.2013.08.008. PubMed DOI
Kaur G., Dufour J.M. Cell Lines: Valuable Tools or Useless Artifacts. Spermatogenesis. 2012;2:1–5. doi: 10.4161/spmg.19885. PubMed DOI PMC
Loi M., Trazzi S., Fuchs C., Galvani G., Medici G., Gennaccaro L., Tassinari M., Ciani E. Increased DNA Damage and Apoptosis in CDKL5-Deficient Neurons. Mol. Neurobiol. 2020;57:2244–2262. doi: 10.1007/s12035-020-01884-8. PubMed DOI
Li C., Jackson R.M. Reactive Species Mechanisms of Cellular Hypoxia-Reoxygenation Injury. Am. J. Physiol. Cell Physiol. 2002;282:C227–C241. doi: 10.1152/ajpcell.00112.2001. PubMed DOI
Plateel M., Dehouck M.P., Torpier G., Cecchelli R., Teissier E. Hypoxia Increases the Susceptibility to Oxidant Stress and the Permeability of the Blood-Brain Barrier Endothelial Cell Monolayer. J. Neurochem. 1995;65:2138–2145. doi: 10.1046/j.1471-4159.1995.65052138.x. PubMed DOI
Giraud S., Steichen C., Couturier P., Tillet S., Mallet V., Coudroy R., Goujon J.-M., Hannaert P., Hauet T. Influence of Hypoxic Preservation Temperature on Endothelial Cells and Kidney Integrity. Biomed. Res. Int. 2019;2019:8572138. doi: 10.1155/2019/8572138. PubMed DOI PMC
Muñoz-Sánchez J., Chánez-Cárdenas M.E. The Use of Cobalt Chloride as a Chemical Hypoxia Model. J. Appl. Toxicol. 2019;39:556–570. doi: 10.1002/jat.3749. PubMed DOI
Wang Z., Wang F., Kong X., Gao X., Gu Y., Zhang J. Oscillatory Shear Stress Induces Oxidative Stress via TLR4 Activation in Endothelial Cells. Mediat. Inflamm. 2019;2019:7162976. doi: 10.1155/2019/7162976. PubMed DOI PMC
Szczesny S.E. Ex Vivo Models of Musculoskeletal Tissues. Connect. Tissue Res. 2020;61:245–247. doi: 10.1080/03008207.2020.1742418. PubMed DOI
Giraud S., Thuillier R., Cau J., Hauet T. In Vitro/Ex Vivo Models for the Study of Ischemia Reperfusion Injury during Kidney Perfusion. Int. J. Mol. Sci. 2020;21:8156. doi: 10.3390/ijms21218156. PubMed DOI PMC
Chen Y., Shi J., Xia T.C., Xu R., He X., Xia Y. Preservation Solutions for Kidney Transplantation: History, Advances and Mechanisms. Cell Transpl. 2019;28:1472–1489. doi: 10.1177/0963689719872699. PubMed DOI PMC
Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell. 2007;131:861–872. doi: 10.1016/j.cell.2007.11.019. PubMed DOI
Hockemeyer D., Jaenisch R. Induced Pluripotent Stem Cells Meet Genome Editing. Cell Stem Cell. 2016;18:573–586. doi: 10.1016/j.stem.2016.04.013. PubMed DOI PMC
Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science. 2012;337:816–821. doi: 10.1126/science.1225829. PubMed DOI PMC
Steichen C., Giraud S., Hauet T. Combining Kidney Organoids and Genome Editing Technologies for a Better Understanding of Physiopathological Mechanisms of Renal Diseases: State of the Art. Front. Med. 2020;7:10. doi: 10.3389/fmed.2020.00010. PubMed DOI PMC
Vergara M.N., Flores-Bellver M., Aparicio-Domingo S., McNally M., Wahlin K.J., Saxena M.T., Mumm J.S., Canto-Soler M.V. Three-Dimensional Automated Reporter Quantification (3D-ARQ) Technology Enables Quantitative Screening in Retinal Organoids. Development. 2017;144:3698–3705. doi: 10.1242/dev.146290. PubMed DOI PMC
Njoroge R.N., Vatapalli R.J., Abdulkadir S.A. Organoids Increase the Predictive Value of in Vitro Cancer Chemoprevention Studies for in Vivo Outcome. Front. Oncol. 2019;9:77. doi: 10.3389/fonc.2019.00077. PubMed DOI PMC
Hartman K.G., Bortner J.D., Falk G.W., Yu J., Martín M.G., Rustgi A.K., Lynch J.P. Modeling Inflammation and Oxidative Stress in Gastrointestinal Disease Development Using Novel Organotypic Culture Systems. Stem Cell Res. Ther. 2013;4:S5. doi: 10.1186/scrt366. PubMed DOI PMC
Kalabis J., Wong G.S., Vega M.E., Natsuizaka M., Robertson E.S., Herlyn M., Nakagawa H., Rustgi A.K. Isolation and Characterization of Mouse and Human Esophageal Epithelial Cells in 3D Organotypic Culture. Nat. Protoc. 2012;7:235–246. doi: 10.1038/nprot.2011.437. PubMed DOI PMC
Hale L.J., Howden S.E., Phipson B., Lonsdale A., Er P.X., Ghobrial I., Hosawi S., Wilson S., Lawlor K.T., Khan S., et al. 3D Organoid-Derived Human Glomeruli for Personalised Podocyte Disease Modelling and Drug Screening. Nat. Commun. 2018;9:5167. doi: 10.1038/s41467-018-07594-z. PubMed DOI PMC
Dey M., Ozbolat I.T. 3D Bioprinting of Cells, Tissues and Organs. Sci. Rep. 2020;10:14023. doi: 10.1038/s41598-020-70086-y. PubMed DOI PMC
Datta P., Dey M., Ataie Z., Unutmaz D., Ozbolat I.T. 3D Bioprinting for Reconstituting the Cancer Microenvironment. NPJ Precis. Oncol. 2020;4:18. doi: 10.1038/s41698-020-0121-2. PubMed DOI PMC
Fabre G., Bayach I., Berka K., Paloncýová M., Starok M., Rossi C., Duroux J.-L., Otyepka M., Trouillas P. Synergism of Antioxidant Action of Vitamins E, C and Quercetin Is Related to Formation of Molecular Associations in Biomembranes. Chem. Commun. 2015;51:7713–7716. doi: 10.1039/C5CC00636H. PubMed DOI
Leopoldini M., Russo N., Toscano M. The Molecular Basis of Working Mechanism of Natural Polyphenolic Antioxidants. Food Chem. 2011;125:288–306. doi: 10.1016/j.foodchem.2010.08.012. DOI
Dangles O., Dufour C., Tonnelé C., Trouillas P. The Physical Chemistry of Polyphenols: Insights into the Activity of Polyphenols in Humans at the Molecular Level. In: Yoshida K., Cheynier V., Quideau S., editors. Recent Advances in Polyphenol Research. John Wiley & Sons, Ltd.; Chichester, UK: 2016. pp. 1–35.
Trouillas P., Marsal P., Svobodová A., Vostálová J., Gazák R., Hrbác J., Sedmera P., Kren V., Lazzaroni R., Duroux J.-L., et al. Mechanism of the Antioxidant Action of Silybin and 2,3-Dehydrosilybin Flavonolignans: A Joint Experimental and Theoretical Study. J. Phys. Chem. A. 2008;112:1054–1063. doi: 10.1021/jp075814h. PubMed DOI
Trouillas P., Marsal P., Siri D., Lazzaroni R., Duroux J.-L. A DFT Study of the Reactivity of OH Groups in Quercetin and Taxifolin Antioxidants: The Specificity of the 3-OH Site. Food Chem. 2006;97:679–688. doi: 10.1016/j.foodchem.2005.05.042. DOI
Richa K., Karmaker R., Ao T., Longkumer N., Singha B., Sinha U.B. Rationale for Antioxidant Interaction Studies of 4-Bromo-1-Isothiocyanato-2-Methylbenzene—An Experimental and Computational Investigation. Chem. Phys. Lett. 2020;753:137611. doi: 10.1016/j.cplett.2020.137611. DOI
Lauberte L., Fabre G., Ponomarenko J., Dizhbite T., Evtuguin D.V., Telysheva G., Trouillas P. Lignin Modification Supported by DFT-Based Theoretical Study as a Way to Produce Competitive Natural Antioxidants. Molecules. 2019;24:1794. doi: 10.3390/molecules24091794. PubMed DOI PMC
Vacek J., Zatloukalová M., Desmier T., Nezhodová V., Hrbáč J., Kubala M., Křen V., Ulrichová J., Trouillas P. Antioxidant, Metal-Binding and DNA-Damaging Properties of Flavonolignans: A Joint Experimental and Computational Highlight Based on 7-O-Galloylsilybin. Chem. Biol. Interact. 2013;205:173–180. doi: 10.1016/j.cbi.2013.07.006. PubMed DOI
Reza Nazifi S.M., Asgharshamsi M.H., Dehkordi M.M., Zborowski K.K. Antioxidant Properties of Aloe Vera Components: A DFT Theoretical Evaluation. Free Radic. Res. 2019;53:922–931. doi: 10.1080/10715762.2019.1648798. PubMed DOI
Lingwood M., Hammond J.R., Hrovat D.A., Mayer J.M., Borden W.T. MPW1K Performs Much Better than B3LYP in DFT Calculations on Reactions That Proceed by Proton-Coupled Electron Transfer (PCET) J. Chem. Theory Comput. 2006;2:740–745. doi: 10.1021/ct050282z. PubMed DOI PMC
Chiodo S.G., Leopoldini M., Russo N., Toscano M. The Inactivation of Lipid Peroxide Radical by Quercetin. A Theoretical Insight. Phys. Chem. Chem. Phys. 2010;12:7662–7670. doi: 10.1039/b924521a. PubMed DOI
Di Meo F., Lemaur V., Cornil J., Lazzaroni R., Duroux J.-L., Olivier Y., Trouillas P. Free Radical Scavenging by Natural Polyphenols: Atom versus Electron Transfer. J. Phys. Chem. A. 2013;117:2082–2092. doi: 10.1021/jp3116319. PubMed DOI
Anouar E.H., Raweh S., Bayach I., Taha M., Baharudin M.S., Di Meo F., Hasan M.H., Adam A., Ismail N.H., Weber J.-F.F., et al. Antioxidant Properties of Phenolic Schiff Bases: Structure-Activity Relationship and Mechanism of Action. J. Comput. Aided Mol. Des. 2013;27:951–964. doi: 10.1007/s10822-013-9692-0. PubMed DOI
Nakatani N., Nakao Y., Sato H., Sakaki S. Theoretical Study of Dioxygen Binding Process in Iron(III) Catechol Dioxygenase: “Oxygen Activation” vs “Substrate Activation”. J. Phys. Chem. B. 2009;113:4826–4836. doi: 10.1021/jp806507k. PubMed DOI
Furia E., Marino T., Russo N. Insights into the Coordination Mode of Quercetin with the Al(III) Ion from a Combined Experimental and Theoretical Study. Dalton Trans. 2014;43:7269–7274. doi: 10.1039/C4DT00212A. PubMed DOI
Kaviani S., Izadyar M., Housaindokht M.R. A DFT Study on the Metal Ion Selectivity of Deferiprone Complexes. Comput. Biol. Chem. 2020;86:107267. doi: 10.1016/j.compbiolchem.2020.107267. PubMed DOI
Di Meo F., Fabre G., Berka K., Ossman T., Chantemargue B., Paloncýová M., Marquet P., Otyepka M., Trouillas P. In Silico Pharmacology: Drug Membrane Partitioning and Crossing. Pharmacol. Res. 2016;111:471–486. doi: 10.1016/j.phrs.2016.06.030. PubMed DOI
Ossman T., Fabre G., Trouillas P. Interaction of Wine Anthocyanin Derivatives with Lipid Bilayer Membranes. Comput. Theor. Chem. 2016;1077:80–86. doi: 10.1016/j.comptc.2015.10.034. DOI
Pyszková M., Biler M., Biedermann D., Valentová K., Kuzma M., Vrba J., Ulrichová J., Sokolová R., Mojović M., Popović-Bijelić A., et al. Flavonolignan 2,3-Dehydroderivatives: Preparation, Antiradical and Cytoprotective Activity. Free Radic. Biol. Med. 2016;90:114–125. doi: 10.1016/j.freeradbiomed.2015.11.014. PubMed DOI
Socrier L., Rosselin M., Gomez Giraldo A.M., Chantemargue B., Di Meo F., Trouillas P., Durand G., Morandat S. Nitrone-Trolox Conjugate as an Inhibitor of Lipid Oxidation: Towards Synergistic Antioxidant Effects. Biochim. Biophys. Acta Biomembr. 2019;1861:1489–1501. doi: 10.1016/j.bbamem.2019.06.008. PubMed DOI
Lin S., Zhang G., Liao Y., Pan J., Gong D. Dietary Flavonoids as Xanthine Oxidase Inhibitors: Structure-Affinity and Structure-Activity Relationships. J. Agric. Food Chem. 2015;63:7784–7794. doi: 10.1021/acs.jafc.5b03386. PubMed DOI
Zhao J., Huang L., Sun C., Zhao D., Tang H. Studies on the Structure-Activity Relationship and Interaction Mechanism of Flavonoids and Xanthine Oxidase through Enzyme Kinetics, Spectroscopy Methods and Molecular Simulations. Food Chem. 2020;323:126807. doi: 10.1016/j.foodchem.2020.126807. PubMed DOI
Liu Y., Chen H., Xiang H., Lei H., Zhang D., Qiu Y., Xu L. Inhibition and Molecular Mechanism of Diosmetin against Xanthine Oxidase by Multiple Spectroscopies and Molecular Docking. New J. Chem. 2020;44:6799–6809. doi: 10.1039/D0NJ00679C. DOI
Tang H., Zhao D. Investigation of the Interaction between Salvianolic Acid C and Xanthine Oxidase: Insights from Experimental Studies Merging with Molecular Docking Methods. Bioorg. Chem. 2019;88:102981. doi: 10.1016/j.bioorg.2019.102981. PubMed DOI
Malik N., Dhiman P., Khatkar A. In Silico Design and Synthesis of Targeted Curcumin Derivatives as Xanthine Oxidase Inhibitors. Curr. Drug Targets. 2019;20:593–603. doi: 10.2174/1389450120666181122100511. PubMed DOI
Zeng N., Zhang G., Hu X., Pan J., Gong D. Mechanism of Fisetin Suppressing Superoxide Anion and Xanthine Oxidase Activity. J. Funct. Foods. 2019;58:1–10. doi: 10.1016/j.jff.2019.04.044. DOI
Santolini J., Wootton S.A., Jackson A.A., Feelisch M. The Redox Architecture of Physiological Function. Curr. Opin. Physiol. 2019;9:34–47. doi: 10.1016/j.cophys.2019.04.009. PubMed DOI PMC
Wang R.-S., Oldham W.M., Maron B.A., Loscalzo J. Systems Biology Approaches to Redox Metabolism in Stress and Disease States. Antioxid. Redox Signal. 2018;29:953–972. doi: 10.1089/ars.2017.7256. PubMed DOI PMC
Buettner G.R., Wagner B.A., Rodgers V.G.J. Quantitative Redox Biology: An Approach to Understand the Role of Reactive Species in Defining the Cellular Redox Environment. Cell Biochem. Biophys. 2013;67:477–483. doi: 10.1007/s12013-011-9320-3. PubMed DOI PMC
Tomar N., Sadri S., Cowley A.W., Yang C., Quryshi N., Pannala V.R., Audi S.H., Dash R.K. A Thermodynamically-Constrained Mathematical Model for the Kinetics and Regulation of NADPH Oxidase 2 Complex-Mediated Electron Transfer and Superoxide Production. Free Radic. Biol. Med. 2019;134:581–597. doi: 10.1016/j.freeradbiomed.2019.02.003. PubMed DOI PMC
Collin F. Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases. Int. J. Mol. Sci. 2019;20:2407. doi: 10.3390/ijms20102407. PubMed DOI PMC
Xiao W., Wang R.-S., Handy D.E., Loscalzo J. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism. Antioxid. Redox Signal. 2018;28:251–272. doi: 10.1089/ars.2017.7216. PubMed DOI PMC
Selvaggio G., Coelho P.M.B.M., Salvador A. Mapping the Phenotypic Repertoire of the Cytoplasmic 2-Cys Peroxiredoxin—Thioredoxin System. 1. Understanding Commonalities and Differences among Cell Types. Redox Biol. 2018;15:297–315. doi: 10.1016/j.redox.2017.12.008. PubMed DOI PMC
Caravaca M., Sanchez-Andrada P., Soto-Meca A. SimKinet: A Free Educational Tool Based on an Electrical Analogy to Solve Chemical Kinetic Equations. PLoS ONE. 2019;14:e0213302. doi: 10.1371/journal.pone.0213302. PubMed DOI PMC
Benfeitas R., Selvaggio G., Antunes F., Coelho P.M.B.M., Salvador A. Hydrogen Peroxide Metabolism and Sensing in Human Erythrocytes: A Validated Kinetic Model and Reappraisal of the Role of Peroxiredoxin II. Free Radic. Biol. Med. 2014;74:35–49. doi: 10.1016/j.freeradbiomed.2014.06.007. PubMed DOI
An G. In Silico Experiments of Existing and Hypothetical Cytokine-Directed Clinical Trials Using Agent-Based Modeling. Crit. Care Med. 2004;32:2050–2060. doi: 10.1097/01.CCM.0000139707.13729.7D. PubMed DOI
Park J., Lee J., Choi C. Mitochondrial Network Determines Intracellular ROS Dynamics and Sensitivity to Oxidative Stress through Switching Inter-Mitochondrial Messengers. PLoS ONE. 2011;6:e23211. doi: 10.1371/journal.pone.0023211. PubMed DOI PMC
Abou-Jaoudé W., Traynard P., Monteiro P.T., Saez-Rodriguez J., Helikar T., Thieffry D., Chaouiya C. Logical Modeling and Dynamical Analysis of Cellular Networks. Front. Genet. 2016;7:94. doi: 10.3389/fgene.2016.00094. PubMed DOI PMC
Antunes F., Salvador A., Marinho H.S., Alves R., Pinto R.E. Lipid Peroxidation in Mitochondrial Inner Membranes. I. An Integrative Kinetic Model. Free Radic. Biol. Med. 1996;21:917–943. doi: 10.1016/S0891-5849(96)00185-2. PubMed DOI
Noble D. From the Hodgkin-Huxley Axon to the Virtual Heart. J. Physiol. 2007;580:15–22. doi: 10.1113/jphysiol.2006.119370. PubMed DOI PMC
Kembro J.M., Aon M.A., Winslow R.L., O’Rourke B., Cortassa S. Integrating Mitochondrial Energetics, Redox and ROS Metabolic Networks: A Two-Compartment Model. Biophys. J. 2013;104:332–343. doi: 10.1016/j.bpj.2012.11.3808. PubMed DOI PMC
Selivanov V.A., Cascante M., Friedman M., Schumaker M.F., Trucco M., Votyakova T.V. Multistationary and Oscillatory Modes of Free Radicals Generation by the Mitochondrial Respiratory Chain Revealed by a Bifurcation Analysis. PLoS Comput. Biol. 2012;8:e1002700. doi: 10.1371/journal.pcbi.1002700. PubMed DOI PMC
Zorov D.B., Juhaszova M., Sollott S.J. Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release. Physiol. Rev. 2014;94:909–950. doi: 10.1152/physrev.00026.2013. PubMed DOI PMC
Selivanov V.A., Votyakova T.V., Pivtoraiko V.N., Zeak J., Sukhomlin T., Trucco M., Roca J., Cascante M. Reactive Oxygen Species Production by Forward and Reverse Electron Fluxes in the Mitochondrial Respiratory Chain. PLoS Comput. Biol. 2011;7:e1001115. doi: 10.1371/journal.pcbi.1001115. PubMed DOI PMC
Altıntaş A., Davidsen K., Garde C., Mortensen U.H., Brasen J.C., Sams T., Workman C.T. High-Resolution Kinetics and Modeling of Hydrogen Peroxide Degradation in Live Cells. Free Radic. Biol. Med. 2016;101:143–153. doi: 10.1016/j.freeradbiomed.2016.10.006. PubMed DOI
Schittenhelm D., Neuss-Radu M., Verma N., Pink M., Schmitz-Spanke S. ROS and Pentose Phosphate Pathway: Mathematical Modelling of the Metabolic Regulation in Response to Xenobiotic-Induced Oxidative Stress and the Proposed Impact of the Gluconate Shunt. Free Radic. Res. 2019;53:979–992. doi: 10.1080/10715762.2019.1660777. PubMed DOI
Korla K. Reactive Oxygen Species and Energy Machinery: An Integrated Dynamic Model. J. Biomol. Struct. Dyn. 2016;34:1625–1640. doi: 10.1080/07391102.2015.1086958. PubMed DOI
Marinho H.S., Real C., Cyrne L., Soares H., Antunes F. Hydrogen Peroxide Sensing, Signaling and Regulation of Transcription Factors. Redox Biol. 2014;2:535–562. doi: 10.1016/j.redox.2014.02.006. PubMed DOI PMC
Kinoshita A., Nakayama Y., Kitayama T., Tomita M. Simulation Study of Methemoglobin Reduction in Erythrocytes. Differential Contributions of Two Pathways to Tolerance to Oxidative Stress. FEBS J. 2007;274:1449–1458. doi: 10.1111/j.1742-4658.2007.05685.x. PubMed DOI
Komalapriya C., Kaloriti D., Tillmann A.T., Yin Z., Herrero-de-Dios C., Jacobsen M.D., Belmonte R.C., Cameron G., Haynes K., Grebogi C., et al. Integrative Model of Oxidative Stress Adaptation in the Fungal Pathogen Candida Albicans. PLoS ONE. 2015;10:e0137750. doi: 10.1371/journal.pone.0137750. PubMed DOI PMC
Fry B.C., Edwards A., Layton A.T. Impact of Nitric-Oxide-Mediated Vasodilation and Oxidative Stress on Renal Medullary Oxygenation: A Modeling Study. Am. J. Physiol. Renal Physiol. 2016;310:F237–F247. doi: 10.1152/ajprenal.00334.2015. PubMed DOI PMC
Mapuskar K.A., Wen H., Holanda D.G., Rastogi P., Steinbach E., Han R., Coleman M.C., Attanasio M., Riley D.P., Spitz D.R., et al. Persistent Increase in Mitochondrial Superoxide Mediates Cisplatin-Induced Chronic Kidney Disease. Redox Biol. 2019;20:98–106. doi: 10.1016/j.redox.2018.09.020. PubMed DOI PMC
Schleicher J., Dahmen U. Computational Modeling of Oxidative Stress in Fatty Livers Elucidates the Underlying Mechanism of the Increased Susceptibility to Ischemia/Reperfusion Injury. Comput. Struct. Biotechnol. J. 2018;16:511–522. doi: 10.1016/j.csbj.2018.10.013. PubMed DOI PMC
Benfeitas R., Uhlen M., Nielsen J., Mardinoglu A. New Challenges to Study Heterogeneity in Cancer Redox Metabolism. Front. Cell Dev. Biol. 2017;5:65. doi: 10.3389/fcell.2017.00065. PubMed DOI PMC