Sumoylation regulates the stability and nuclease activity of Saccharomyces cerevisiae Dna2
Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
206292/E/17/Z
Wellcome Trust - United Kingdom
PubMed
31098407
PubMed Central
PMC6506525
DOI
10.1038/s42003-019-0428-0
PII: 428
Knihovny.cz E-zdroje
- Klíčová slova
- DNA, Genomic instability,
- MeSH
- DNA fungální genetika metabolismus MeSH
- DNA-helikasy chemie genetika metabolismus MeSH
- fosforylace MeSH
- kinetika MeSH
- metabolické sítě a dráhy MeSH
- poškození DNA MeSH
- proteinové domény MeSH
- rekombinantní fúzní proteiny chemie genetika metabolismus MeSH
- replikace DNA MeSH
- Saccharomyces cerevisiae - proteiny chemie genetika metabolismus MeSH
- Saccharomyces cerevisiae enzymologie genetika růst a vývoj MeSH
- stabilita enzymů MeSH
- sumoylace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA fungální MeSH
- DNA-helikasy MeSH
- DNA2 protein, S cerevisiae MeSH Prohlížeč
- rekombinantní fúzní proteiny MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- Siz2 protein, S cerevisiae MeSH Prohlížeč
Dna2 is an essential nuclease-helicase that acts in several distinct DNA metabolic pathways including DNA replication and recombination. To balance these functions and prevent unscheduled DNA degradation, Dna2 activities must be regulated. Here we show that Saccharomyces cerevisiae Dna2 function is controlled by sumoylation. We map the sumoylation sites to the N-terminal regulatory domain of Dna2 and show that in vitro sumoylation of recombinant Dna2 impairs its nuclease but not helicase activity. In cells, the total levels of the non-sumoylatable Dna2 variant are elevated. However, non-sumoylatable Dna2 shows impaired nuclear localization and reduced recruitment to foci upon DNA damage. Non-sumoylatable Dna2 reduces the rate of DNA end resection, as well as impedes cell growth and cell cycle progression through S phase. Taken together, these findings show that in addition to Dna2 phosphorylation described previously, Dna2 sumoylation is required for the homeostasis of the Dna2 protein function to promote genome stability.
Department of Biology Masaryk University Kamenice 5 625 00 Brno Czech Republic
International Clinical Research Center St Anne's University Hospital 656 91 Brno Czech Republic
National Center for Biomolecular Research Masaryk University Kamenice 5 625 00 Brno Czech Republic
Zobrazit více v PubMed
Jackson SP, Durocher D. Regulation of DNA damage responses by ubiquitin and SUMO. Mol. Cell. 2013;49:795–807. doi: 10.1016/j.molcel.2013.01.017. PubMed DOI
Jentsch S, Psakhye I. Control of nuclear activities by substrate-selective and protein-group SUMOylation. Annu. Rev. Genet. 2013;47:167–186. doi: 10.1146/annurev-genet-111212-133453. PubMed DOI
Ulrich HD. Two-way communications between ubiquitin-like modifiers and DNA. Nat. Struct. Mol. Biol. 2014;21:317–324. doi: 10.1038/nsmb.2805. PubMed DOI
Altmannova V, Kolesar P, Krejci L. SUMO wrestles with recombination. Biomolecules. 2012;2:350–375. doi: 10.3390/biom2030350. PubMed DOI PMC
Bergink S, Jentsch S. Principles of ubiquitin and SUMO modifications in DNA repair. Nature. 2009;458:461–467. doi: 10.1038/nature07963. PubMed DOI
Liebelt F, Vertegaal AC. Ubiquitin-dependent and independent roles of SUMO in proteostasis. Am. J. Physiol. Cell Physiol. 2016;311:C284–C296. doi: 10.1152/ajpcell.00091.2016. PubMed DOI PMC
Sarangi P, Zhao X. SUMO-mediated regulation of DNA damage repair and responses. Trends Biochem. Sci. 2015;40:233–242. doi: 10.1016/j.tibs.2015.02.006. PubMed DOI PMC
Kerscher O. SUMO junction-what’s your function? New insights through SUMO-interacting motifs. EMBO Rep. 2007;8:550–555. doi: 10.1038/sj.embor.7400980. PubMed DOI PMC
Psakhye I, Jentsch S. Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair. Cell. 2012;151:807–820. doi: 10.1016/j.cell.2012.10.021. PubMed DOI
Budd ME, Choe W, Campbell JL. The nuclease activity of the yeast DNA2 protein, which is related to the RecB-like nucleases, is essential in vivo. J. Biol. Chem. 2000;275:16518–16529. doi: 10.1074/jbc.M909511199. PubMed DOI
Formosa T, Nittis T. Dna2 mutants reveal interactions with Dna polymerase alpha and Ctf4, a Pol alpha accessory factor, and show that full Dna2 helicase activity is not essential for growth. Genetics. 1999;151:1459–1470. PubMed PMC
Bae SH, Bae KH, Kim JA, Seo YS. RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes. Nature. 2001;412:456–461. doi: 10.1038/35086609. PubMed DOI
Budd ME, Choe WC, Campbell JL. DNA2 encodes a DNA helicase essential for replication of eukaryotic chromosomes. J. Biol. Chem. 1995;270:26766–26769. doi: 10.1074/jbc.270.45.26766. PubMed DOI
Cejka P, et al. DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2. Nature. 2010;467:112–116. doi: 10.1038/nature09355. PubMed DOI PMC
Kumar S, Burgers PM. Lagging strand maturation factor Dna2 is a component of the replication checkpoint initiation machinery. Genes Dev. 2013;27:313–321. doi: 10.1101/gad.204750.112. PubMed DOI PMC
Olmezer G, et al. Replication intermediates that escape Dna2 activity are processed by Holliday junction resolvase Yen1. Nat. Commun. 2016;7:13157. doi: 10.1038/ncomms13157. PubMed DOI PMC
Thangavel S, et al. DNA2 drives processing and restart of reversed replication forks in human cells. J. Cell Biol. 2015;208:545–562. doi: 10.1083/jcb.201406100. PubMed DOI PMC
Hu J, et al. The intra-S phase checkpoint targets Dna2 to prevent stalled replication forks from reversing. Cell. 2012;149:1221–1232. doi: 10.1016/j.cell.2012.04.030. PubMed DOI
Zhu Z, Chung WH, Shim EY, Lee SE, Ira G. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell. 2008;134:981–994. doi: 10.1016/j.cell.2008.08.037. PubMed DOI PMC
Levikova M, Pinto C, Cejka P. The motor activity of DNA2 functions as an ssDNA translocase to promote DNA end resection. Genes Dev. 2017;31:493–502. doi: 10.1101/gad.295196.116. PubMed DOI PMC
Niu H, et al. Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae. Nature. 2010;467:108–111. doi: 10.1038/nature09318. PubMed DOI PMC
Miller AS, et al. A novel role of the Dna2 translocase function in DNA break resection. Genes Dev. 2017;31:503–510. doi: 10.1101/gad.295659.116. PubMed DOI PMC
Cannavo E, Cejka P, Kowalczykowski SC. Relationship of DNA degradation by Saccharomyces cerevisiae exonuclease 1 and its stimulation by RPA and Mre11-Rad50-Xrs2 to DNA end resection. Proc. Natl Acad. Sci. USA. 2013;110:E1661–E1668. doi: 10.1073/pnas.1305166110. PubMed DOI PMC
Nicolette ML, et al. Mre11-Rad50-Xrs2 and Sae2 promote 5’ strand resection of DNA double-strand breaks. Nat. Struct. Mol. Biol. 2010;17:1478–1485. doi: 10.1038/nsmb.1957. PubMed DOI PMC
Chen X, et al. Cell cycle regulation of DNA double-strand break end resection by Cdk1-dependent Dna2 phosphorylation. Nat. Struct. Mol. Biol. 2011;18:1015–1019. doi: 10.1038/nsmb.2105. PubMed DOI PMC
Nimonkar AV, Ozsoy AZ, Genschel J, Modrich P, Kowalczykowski SC. Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. Proc. Natl Acad. Sci. USA. 2008;105:16906–16911. doi: 10.1073/pnas.0809380105. PubMed DOI PMC
Sarangi P, et al. Sumoylation influences DNA break repair partly by increasing the solubility of a conserved end resection protein. PLoS Genet. 2015;11:e1004899. doi: 10.1371/journal.pgen.1004899. PubMed DOI PMC
Chen YJ, et al. S. cerevisiae Mre11 recruits conjugated SUMO moieties to facilitate the assembly and function of the Mre11-Rad50-Xrs2 complex. Nucl. Acids Res. 2016;44:2199–2213. doi: 10.1093/nar/gkv1523. PubMed DOI PMC
Kolesar P, Sarangi P, Altmannova V, Zhao X, Krejci L. Dual roles of the SUMO-interacting motif in the regulation of Srs2 sumoylation. Nucl. Acids Res. 2012;40:7831–7843. doi: 10.1093/nar/gks484. PubMed DOI PMC
Bologna Serena, Altmannova Veronika, Valtorta Emanuele, Koenig Christiane, Liberali Prisca, Gentili Christian, Anrather Dorothea, Ammerer Gustav, Pelkmans Lucas, Krejci Lumir, Ferrari Stefano. Sumoylation regulates EXO1 stability and processing of DNA damage. Cell Cycle. 2015;14(15):2439–2450. doi: 10.1080/15384101.2015.1060381. PubMed DOI PMC
Ulrich HD, Davies AA. In vivo detection and characterization of sumoylation targets in Saccharomyces cerevisiae. Methods Mol. Biol. 2009;497:81–103. doi: 10.1007/978-1-59745-566-4_6. PubMed DOI
Davies AA, Ulrich HD. Detection of PCNA modifications in Saccharomyces cerevisiae. Methods Mol. Biol. 2012;920:543–567. doi: 10.1007/978-1-61779-998-3_36. PubMed DOI
Tsabar Michael, Eapen Vinay V., Mason Jennifer M., Memisoglu Gonen, Waterman David P., Long Marcus J., Bishop Douglas K., Haber James E. Caffeine impairs resection during DNA break repair by reducing the levels of nucleases Sae2 and Dna2. Nucleic Acids Research. 2015;43(14):6889–6901. doi: 10.1093/nar/gkv520. PubMed DOI PMC
Bermudez-Lopez M, Aragon L. Smc5/6 complex regulates Sgs1 recombination functions. Curr. Genet. 2017;63:381–388. doi: 10.1007/s00294-016-0648-5. PubMed DOI PMC
Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature. 2002;419:135–141. doi: 10.1038/nature00991. PubMed DOI
Saponaro M, et al. Cdk1 targets Srs2 to complete synthesis-dependent strand annealing and to promote recombinational repair. PLoS Genet. 2010;6:e1000858. doi: 10.1371/journal.pgen.1000858. PubMed DOI PMC
Bae KH, et al. Bimodal interaction between replication-protein A and Dna2 is critical for Dna2 function both in vivo and in vitro. Nucl. acids Res. 2003;31:3006–3015. doi: 10.1093/nar/gkg422. PubMed DOI PMC
Balakrishnan L, Polaczek P, Pokharel S, Campbell JL, Bambara RA. Dna2 exhibits a unique strand end-dependent helicase function. J. Biol. Chem. 2010;285:38861–38868. doi: 10.1074/jbc.M110.165191. PubMed DOI PMC
Levikova M, Klaue D, Seidel R, Cejka P. Nuclease activity of Saccharomyces cerevisiae Dna2 inhibits its potent DNA helicase activity. Proc. Natl Acad. Sci. USA. 2013;110:E1992–E2001. doi: 10.1073/pnas.1300390110. PubMed DOI PMC
Lee CH, et al. The N-terminal 45-kDa domain of Dna2 endonuclease/helicase targets the enzyme to secondary structure DNA. J. Biol. Chem. 2013;288:9468–9481. doi: 10.1074/jbc.M112.418715. PubMed DOI PMC
Bae SH, et al. Tripartite structure of Saccharomyces cerevisiae Dna2 helicase/endonuclease. Nucl. Acids Res. 2001;29:3069–3079. doi: 10.1093/nar/29.14.3069. PubMed DOI PMC
Widlund PO, Davis TN. A high-efficiency method to replace essential genes with mutant alleles in yeast. Yeast. 2005;22:769–774. doi: 10.1002/yea.1244. PubMed DOI PMC
White CI, Haber JE. Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. Embo J. 1990;9:663–673. doi: 10.1002/j.1460-2075.1990.tb08158.x. PubMed DOI PMC
Budd ME, Reis CC, Smith S, Myung K, Campbell JL. Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta. Mol. Cell. Biol. 2006;26:2490–2500. doi: 10.1128/MCB.26.7.2490-2500.2006. PubMed DOI PMC
Zhou J, Monson EK, Teng SC, Schulz VP, Zakian VA. Pif1p helicase, a catalytic inhibitor of telomerase in yeast. Science. 2000;289:771–774. doi: 10.1126/science.289.5480.771. PubMed DOI
Parenteau J, Wellinger RJ. Accumulation of single-stranded DNA and destabilization of telomeric repeats in yeast mutant strains carrying a deletion of RAD27. Mol. Cell. Biol. 1999;19:4143–4152. doi: 10.1128/MCB.19.6.4143. PubMed DOI PMC
Miteva M, Keusekotten K, Hofmann K, Praefcke GJ, Dohmen RJ. Sumoylation as a signal for polyubiquitylation and proteasomal degradation. Subcell. Biochem. 2010;54:195–214. doi: 10.1007/978-1-4419-6676-6_16. PubMed DOI
Guo Z, et al. Sequential posttranslational modifications program FEN1 degradation during cell-cycle progression. Mol. Cell. 2012;47:444–456. doi: 10.1016/j.molcel.2012.05.042. PubMed DOI PMC
Gibbs-Seymour I, et al. Ubiquitin-SUMO circuitry controls activated fanconi anemia ID complex dosage in response to DNA damage. Mol. Cell. 2015;57:150–164. doi: 10.1016/j.molcel.2014.12.001. PubMed DOI PMC
Ayyagari R, Gomes XV, Gordenin DA, Burgers PM. Okazaki fragment maturation in yeast. I. Distribution of functions between FEN1 AND DNA2. J. Biol. Chem. 2003;278:1618–1625. doi: 10.1074/jbc.M209801200. PubMed DOI
Levikova M, Cejka P. The Saccharomyces cerevisiae Dna2 can function as a sole nuclease in the processing of Okazaki fragments in DNA replication. Nucl. Acids Res. 2015;43:7888–7897. doi: 10.1093/nar/gkv710. PubMed DOI PMC
Fiorentino DF, Crabtree GR. Characterization of Saccharomyces cerevisiae dna2 mutants suggests a role for the helicase late in S phase. Mol. Biol. cell. 1997;8:2519-2537. doi: 10.1091/mbc.8.12.2519. PubMed DOI PMC
Duxin JP, et al. Human Dna2 is a nuclear and mitochondrial DNA maintenance protein. Mol. Cell. Biol. 2009;29:4274–4282. doi: 10.1128/MCB.01834-08. PubMed DOI PMC
Vallen EA, Cross FR. Mutations in RAD27 define a potential link between G1 cyclins and DNA replication. Mol. Cell. Biol. 1995;15:4291–4302. doi: 10.1128/MCB.15.8.4291. PubMed DOI PMC
Kumar S, et al. Inhibition of DNA2 nuclease as a therapeutic strategy targeting replication stress in cancer cells. Oncogenesis. 2017;6:e319. doi: 10.1038/oncsis.2017.15. PubMed DOI PMC
Peng G, et al. Human nuclease/helicase DNA2 alleviates replication stress by promoting DNA end resection. Cancer Res. 2012;72:2802–2813. doi: 10.1158/0008-5472.CAN-11-3152. PubMed DOI PMC
Anand R, Pinto C, Cejka P. Methods to Study DNA End Resection I: Recombinant Protein Purification. Methods Enzym. 2018;600:25–66. doi: 10.1016/bs.mie.2017.11.008. PubMed DOI
Altmannova V, et al. Rad52 SUMOylation affects the efficiency of the DNA repair. Nucl. Acids Res. 2010;38:4708–4721. doi: 10.1093/nar/gkq195. PubMed DOI PMC
Takahashi Y, Toh EA, Kikuchi Y. Comparative analysis of yeast PIAS-type SUMO ligases in vivo and in vitro. J. Biochem. 2003;133:415–422. doi: 10.1093/jb/mvg054. PubMed DOI
Iaccarino I, et al. MSH6, a Saccharomyces cerevisiae protein that binds to mismatches as a heterodimer with MSH2. Curr. Biol. 1996;6:484–486. doi: 10.1016/S0960-9822(02)00516-X. PubMed DOI
Sarangi P, et al. Sumoylation of the Rad1 nuclease promotes DNA repair and regulates its DNA association. Nucl. Acids Res. 2014;42:6393–6404. doi: 10.1093/nar/gku300. PubMed DOI PMC
Cejka P, Kowalczykowski SC. The full-length Saccharomyces cerevisiae Sgs1 protein is a vigorous DNA helicase that preferentially unwinds holliday junctions. J. Biol. Chem. 2010;285:8290–8301. doi: 10.1074/jbc.M109.083196. PubMed DOI PMC
Pinto C, Anand R, Cejka P. Methods to study DNA end resection II: Biochemical reconstitution assays. Methods Enzym. 2018;600:67–106. doi: 10.1016/bs.mie.2017.11.009. PubMed DOI
Kowalczykowski SC, Krupp RA. Effects of Escherichia coli SSB protein on the single-stranded DNA-dependent ATPase activity of Escherichia coli RecA protein. Evidence that SSB protein facilitates the binding of RecA protein to regions of secondary structure within single-stranded DNA. J. Mol. Biol. 1987;193:97–113. doi: 10.1016/0022-2836(87)90630-9. PubMed DOI
Janke C, et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast. 2004;21:947–962. doi: 10.1002/yea.1142. PubMed DOI
Liu C, Apodaca J, Davis LE, Rao H. Proteasome inhibition in wild-type yeast Saccharomyces cerevisiae cells. Biotechniques. 2007;42:156-+. doi: 10.2144/000112389. PubMed DOI
Giannattasio M, et al. Exo1 competes with repair synthesis, converts NER intermediates to long ssDNA gaps, and promotes checkpoint activation. Mol. Cell. 2010;40:50–62. doi: 10.1016/j.molcel.2010.09.004. PubMed DOI
Silva S, Gallina I, Eckert-Boulet N, Lisby M. Live cell microscopy of DNA damage response in Saccharomyces cerevisiae. Methods Mol. Biol. 2012;920:433–443. doi: 10.1007/978-1-61779-998-3_30. PubMed DOI