Absence of photosynthetic state transitions in alien chloroplasts
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
BB/E009743/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/R015694/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
31134341
PubMed Central
PMC6602992
DOI
10.1007/s00425-019-03187-2
PII: 10.1007/s00425-019-03187-2
Knihovny.cz E-zdroje
- Klíčová slova
- Cybrid, LHCII, Non-photochemical quenching, State transitions,
- MeSH
- buněčné jádro metabolismus MeSH
- chloroplasty metabolismus MeSH
- fosforylace MeSH
- fotosyntéza MeSH
- fotosystém II (proteinový komplex) genetika metabolismus MeSH
- genom chloroplastový genetika MeSH
- genom rostlinný genetika MeSH
- proteomika MeSH
- světlosběrné proteinové komplexy genetika metabolismus MeSH
- tabák genetika fyziologie MeSH
- threonin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fotosystém II (proteinový komplex) MeSH
- světlosběrné proteinové komplexy MeSH
- threonin MeSH
The absence of state transitions in a Nt(Hn) cybrid is due to a cleavage of the threonine residue from the misprocessed N-terminus of the LHCII polypeptides. The cooperation between the nucleus and chloroplast genomes is essential for plant photosynthetic fitness. The rapid and specific interactions between nucleus-encoded and chloroplast-encoded proteins are under intense investigation with potential for applications in agriculture and renewable energy technology. Here, we present a novel model for photosynthesis research in which alien henbane (Hyoscyamus niger) chloroplasts function on the nuclear background of a tobacco (Nicotiana tabacum). The result of this coupling is a cytoplasmic hybrid (cybrid) with inhibited state transitions-a mechanism responsible for balancing energy absorption between photosystems. Protein analysis showed differences in the LHCII composition of the cybrid plants. SDS-PAGE analysis revealed a novel banding pattern in the cybrids with at least one additional 'LHCII' band compared to the wild-type parental species. Proteomic work suggested that the N-terminus of at least some of the cybrid Lhcb proteins was missing. These findings provide a mechanistic explanation for the lack of state transitions-the N-terminal truncation of the Lhcb proteins in the cybrid included the threonine residue that is phosphorylated/dephosphorylated in order to trigger state transitions and therefore crucial energy balancing mechanism in plants.
Zobrazit více v PubMed
Adam Z. Chloroplast proteases: possible regulators of gene expression? Biochimie. 2000;82:647–654. doi: 10.1016/S0300-9084(00)00612-X. PubMed DOI
Adam Z, Adamska I, Nakabayashi K, Ostersetzer O, Haussuhl K, Manuell A, Clarke AK. Chloroplast and mitochondrial proteases in Arabidopsis. A proposed nomenclature. Plant Physiol. 2001;125:1912–1918. doi: 10.1104/pp.125.4.1912. PubMed DOI PMC
Allen JF. State transitions—a question of balance. Science. 2009;299:1530–1532. doi: 10.1126/science.1082833. PubMed DOI
Allen JF, de Paula WBM, Puthiyaveetil S, Niel J. A structural phylogenetic map for chloroplast photosynthesis. Trends Plant Sci. 2011;16:645–655. doi: 10.1016/j.tplants.2011.10.004. PubMed DOI
Archibald JM. The puzzle of plastid evolution. Curr Biol. 2009;19:81–88. doi: 10.1016/j.cub.2008.11.067. PubMed DOI
Aro E, Suorsa M, Rokka A, Allahverdiyeva Y, Paakkarinen V, Saleem A, Battchikova N, Rintamäki E. Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. J Exp Bot. 2005;56:347–356. doi: 10.1093/jxb/eri041. PubMed DOI
Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 2012;40:597–603. doi: 10.1093/nar/gks400. PubMed DOI PMC
Babiychuk E, Schantz R, Cherep N, Weil JH, Gleba Y, Kushnir S. Alterations in chlorophyll a/b binding proteins in Solanaceae cybrids. Mol Gen Genet. 1995;249:648–654. doi: 10.1007/BF00418034. PubMed DOI
Bassi R, Silvestri M, Dainese P, Moya I, Giacometti GM. Effects of a nonionic detergent on the spectral properties and aggregation state of the light-harvesting chlorophyll a/b protein complex (LHCII) J Photochem Photobiol, B. 1991;9:335–354. doi: 10.1016/1011-1344(91)80170-M. DOI
Belliard G, Vedel F, Pelletier G. Mitochondrial recombination in cytoplasmic hybrid of Nicotiana tabacum by protoplast fusion. Nature. 1979;281:401–403. doi: 10.1038/281401a0. DOI
Blankenship RE. Molecular mechanisms of photosynthesis. Oxford: Blackwell Science; 2002.
Bouchnak I, Brugière S, Moyet L, Le Gall S, Salvi D, Kuntz M, Tardif M, Rolland N (2019) Unravelling hidden components of the chloroplast envelope proteome: opportunities and limits of better MS sensitivity. Mol Cell Proteomics, mcp-RA118 PubMed PMC
Caffarri S, Kouřil R, Kereïche S, Boekema EJ, Croce R. Functional architecture of higher plant photosystem II supercomplexes. The EMBO J. 2009;28:3052–3063. doi: 10.1038/emboj.2009.232. PubMed DOI PMC
Carlson PS, Smith HH, Dearing RD. Parasexual interspecific plant hybridisation. Proc Natl Acad Sci USA. 1972;69:2292–2294. doi: 10.1073/pnas.69.8.2292. PubMed DOI PMC
Chen YL, Chen LJ, Chu CC, Huang PK, Wen JR, Li HM. TIC236 links the outer and inner membrane translocons of the chloroplast. Nature. 2018;564:125–144. doi: 10.1038/s41586-018-0713-y. PubMed DOI
Chotewutmontri P, Holbrook K, Bruce BD. Plastid protein targeting: preprotein recognition and translocation. Int Rev Cell Mol Biol. 2017;330:227–239. doi: 10.1016/bs.ircmb.2016.09.006. PubMed DOI
Cline K, Henry R. Import and routing of nucleus-encoded chloroplast proteins. Annu Rev Cell Dev Biol. 1996;12:1–26. doi: 10.1146/annurev.cellbio.12.1.1. PubMed DOI
Dainese P, Hoyer-Hansen G, Bassi R. The resolution of chlorophyll a/b binding proteins by a preparative method based on flat bed isoelectric focusing. Photochem Photobiol. 1990;51:693–703. doi: 10.1111/php.1990.51.6.693. PubMed DOI
Dix PJ, Gray JC, Kavanagh TA, Lerbs-Mache S, Medgyesy P, Mordhorst G, Peltier G, Schäfer C, Uijtewaal B. Developments in plastid transformation. Dev Plant Genet Breed. 2000;6:59–66.
Dodds JH, Roberts LW. Experiments in plant tissue culture. Cambridge: Cambridge University Press; 1985.
Eberhard S, Finazzi G, Wollman FA. The dynamics of photosynthesis. Annu Rev Genet. 2008;42:463–515. doi: 10.1146/annurev.genet.42.110807.091452. PubMed DOI
Forsberg J, Allen JF. Protein tyrosine phosphorylation in the transition to light state 2 of chloroplast thylakoids. Photosynth Res. 2001;68:71–79. doi: 10.1023/A:1011891017067. PubMed DOI
Fuks B, Schnell DJ. Mechanism of protein transport across the chloroplast envelope. Plant Physiol. 1997;114:405–420. doi: 10.1104/pp.114.2.405. PubMed DOI PMC
Gao F, Kight AD, Henderson R, Jayanthi S, Patel P, Murchison M, Heyes CD. Regulation of structural dynamics within a signal recognition particle promotes binding of protein targeting substrates. J Biol Chem. 2015;290:15462–15474. doi: 10.1074/jbc.M114.624346. PubMed DOI PMC
Grosser JW, Cmitter FC. Applications of somatic hybridization and cybridization in crop improvement, with citrus as a model. Vitro Cell Dev Biol Plant. 2004;41:220–225. doi: 10.1079/IVP2004634. DOI
Hasegawa K, Yukawa Y, Sugita M, Sugiura M. Organization and transcription of the gene family encoding chlorophyll a/b binding proteins in Nicotiana sylvestris. Gene. 2002;289:161–168. doi: 10.1016/S0378-1119(02)00539-5. PubMed DOI
Kochevenko A, Ratushnyak Y, Kornyeyev D, Stasik O, Porublyova L, Kochubey S, Suprunova T, Gleba Y. Functional cybrid plants of Lycopersicon peruvianum var ‘dentatum’ with chloroplasts of Lycopersicon esculentum. Plant Cell Rep. 2000;19:588–597. doi: 10.1007/s002990050778. PubMed DOI
Kumar A, Cocking EC. Protoplast fusion—a novel approach to organelle genetics in higher plants. Am J Bot. 1987;74:289–1303. doi: 10.1002/j.1537-2197.1987.tb08742.x. DOI
Kuroda H, Maliga P. The plastid clpP1 protease gene is essential for plant development. Nature. 2003;425(6953):86. doi: 10.1038/nature01909. PubMed DOI
Kushnir SG, Shlumukov LR, Pogrebnyak NJ, Berger J, Gleba Y. Functional cybrid plants possessing a Nicotiana genome and an Atropa plastome. Mol Gen Genet. 1987;209:159–163. doi: 10.1007/BF00329852. PubMed DOI
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI
Liu JH, Xu XY, Deng XX. Intergeneric somatic hybridization and its application to crop genetic improvement. Plant Cell Tissue Organ Cult. 2005;82:19–44. doi: 10.1007/s11240-004-6015-0. DOI
Martin W, Herrmann RG. Gene transfer from organelles to the nucleus: how much, what happens, and why? Plant Physiol. 1998;118:9–17. doi: 10.1104/pp.118.1.9. PubMed DOI PMC
Michel H, Griffin PR, Shabanowitz J, Hunts DF, Bennett J. Tandem mass spectrometry identifies sites of three post-translational modifications of spinach light-harvesting chlorophyll protein II. Proteolytic cleavage, acetylation, and phosphorylation. J Biol Chem. 1991;266:17584–17591. PubMed
Negrutiu I, Hinnisdaels S, Mouras A, Gill BS, Ghartichhetri GB, Davey MR, Gleba YY, Sidorov V, Jacobs M. Somatic versus sexual hybridization—features, facts and future. Acta Bot Neerl. 1989;38:253–272. doi: 10.1111/j.1438-8677.1989.tb01350.x. DOI
Nishimura K, Kato Y, Sakamoto W. Chloroplast proteases: updates on proteolysis within and across suborganellar compartments. Plant Physiol. 2016;171:2280–2293. PubMed PMC
Oblong JE, Lamppa GK. Identification of two structurally related proteins involved in proteolytic processing of precursors targeted to the chloroplast. EMBO J. 1992;11:4401–4409. doi: 10.1002/j.1460-2075.1992.tb05540.x. PubMed DOI PMC
Paila YD, Richardson LG, Schnell DJ. New insights into the mechanism of chloroplast protein import and its integration with protein quality control, organelle biogenesis and development. J Mol Biol. 2015;427:1038–1060. doi: 10.1016/j.jmb.2014.08.016. PubMed DOI PMC
Peter S, Spang O, Medgyesy P, Schafer C. Consequences of intergeneric chloroplast transfers on photosynthesis and sensitivity to high light. Aust J Plant Physiol. 1999;26:171–177.
Porra RJ, Thompson WA, Kriedemann PE. Determination of accurate extinction coefficients and simultaneous-equations for assaying chlorophyll-a and chlorophyll-b with 4 different solvents—verification of the concentration of chlorophyll standards by atomic-absorption spectroscopy. Biochim Biophys Acta. 1989;975:384–394. doi: 10.1016/S0005-2728(89)80347-0. DOI
Puthiyaveetil S, Ibrahim IM, Allen JF. Oxidation–reduction signalling components in regulatory pathways of state transitions and photosystem stoichiometry adjustment in chloroplasts. Plant Cell Environ. 2012;35:347–359. doi: 10.1111/j.1365-3040.2011.02349.x. PubMed DOI
Richter CV, Träger C, Schünemann D. Evolutionary substitution of two amino acids in chloroplast SRP54 of higher plants cause its inability to bind SRP RNA. FEBS Lett. 2008;582:3223–3229. doi: 10.1016/j.febslet.2008.08.014. PubMed DOI
Ruban AV. Plants in light. Commun Integr Biol. 2009;2:50–55. doi: 10.4161/cib.2.1.7504. PubMed DOI PMC
Ruban AV, Johnson MP. Dynamics of higher plant photosystem cross-section associated with state transitions. Photosynth Res. 2009;99:173–183. doi: 10.1007/s11120-008-9387-x. PubMed DOI
Ruban AV, Young AJ, Pascal AA, Horton P. The effects of illumination on the Xanthophyll composition of the photosystem-II light-harvesting complexes of spinach thylakoid membranes. Plant Physiol. 1994;104:227–234. doi: 10.1104/pp.104.1.227. PubMed DOI PMC
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Schmitz-Linneweber C, Kushnir S, Babiychuk E, Poltnigg P, Herrmann RG, Maier RM. Pigment deficiency in nightshade/tobacco cybrids is caused by the failure to edit the plastid ATPase alpha-subunit mRNA. Plant Cell. 2005;17:1815–1828. doi: 10.1105/tpc.105.032474. PubMed DOI PMC
Soll J, Schleiff E. Protein import into chloroplasts. Nat Rev Mol Cell Biol. 2004;5:198–218. doi: 10.1038/nrm1333. PubMed DOI
Standfuss J, van Scheltinga ACT, Lamborghini M, Kühlbrandt W. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J. 2005;24:919–928. doi: 10.1038/sj.emboj.7600585. PubMed DOI PMC
Stengel KF, Holdermann I, Cain P, Robinson C, Wild K, Sinning I. Structural basis for specific substrate recognition by the chloroplast signal recognition particle protein cpSRP43. Science. 2008;321:253–256. doi: 10.1126/science.1158640. PubMed DOI
van Amerongen H, Croce R. Primary processes of photosynthesis, part 1. London: Royal Society of Chemistry; 2007. Structure and function of photosystem II light-harvesting proteins (Lhcb) of higher plants; pp. 329–367.
Yukawa M, Tsudzuki T, Sugiura M. The 2005 version of the chloroplast DNA sequence from tobacco (Nicotiana tabacum) Plant Mol Biol Report. 2005;23:359–365. doi: 10.1007/BF02788884. DOI
Zubko MK, Zubko EI, Patskovsky YV, Khvedynich OA, Fisahn J, Gleba YY, Schieder O. Novel ‘homeotic’ CMS patterns generated in Nicotiana via cybridization with Hyoscyamus and Scopolia. J Exp Bot. 1996;47:1101–1110. doi: 10.1093/jxb/47.8.1101. DOI
Zubko MK, Zubko EI, Gleba YY. Self-fertile cybrids Nicotiana tabacum (+Hyoscyamus aureus) with a nucleo-plastome incompatibility. Theor Appl Genet. 2002;105:822–828. doi: 10.1007/s00122-002-1037-7. PubMed DOI