Aptamer-based Targeted Delivery of a G-quadruplex Ligand in Cervical Cancer Cells
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31138870
PubMed Central
PMC6538641
DOI
10.1038/s41598-019-44388-9
PII: 10.1038/s41598-019-44388-9
Knihovny.cz E-zdroje
- MeSH
- aptamery nukleotidové metabolismus farmakologie MeSH
- buněčné linie MeSH
- buňky A549 MeSH
- fibroblasty cytologie účinky léků metabolismus MeSH
- fosfoproteiny antagonisté a inhibitory genetika metabolismus MeSH
- G-kvadruplexy * MeSH
- genetická transkripce MeSH
- HeLa buňky MeSH
- lidé MeSH
- ligandy MeSH
- nádorové buněčné linie MeSH
- nukleolin MeSH
- oligodeoxyribonukleotidy metabolismus farmakologie MeSH
- orgánová specificita MeSH
- promotorové oblasti (genetika) MeSH
- proteiny vázající RNA antagonisté a inhibitory genetika metabolismus MeSH
- protinádorové látky metabolismus farmakologie MeSH
- protoonkogenní proteiny c-myc genetika metabolismus MeSH
- regulace genové exprese u nádorů * MeSH
- technika přenosu genů MeSH
- vazba proteinů MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- AGRO 100 MeSH Prohlížeč
- aptamery nukleotidové MeSH
- fosfoproteiny MeSH
- ligandy MeSH
- oligodeoxyribonukleotidy MeSH
- proteiny vázající RNA MeSH
- protinádorové látky MeSH
- protoonkogenní proteiny c-myc MeSH
AS1411 is a G-rich DNA oligonucleotide that functions as an aptamer of the protein nucleolin, found at high levels on the surface of cancer cells but not on the surface of normal cells. Herein, we have studied AS1411 as a supramolecular carrier for the delivery of an acridine-based G-quadruplex ligand, C8, to HeLa cancer cells. Two AS1411 derivatives, LNA-AS1411 and U-AS1411, were also tested, in an attempt to compare AS1411 pharmacological properties. The results showed that AS1411-C8 complexation was made with great binding strength and that it lowered the ligand's cytotoxicity towards non-malignant cells. This effect was suggested to be due to a decreased internalization of the complexed versus free C8 as shown by flow cytometry. The AS1411 derivatives, despite forming a stable complex with C8, lacked the necessary tumour-selective behaviour. The binding of C8 to AS1411 G-quadruplex structure did not negatively affect the recognition of nucleolin by the aptamer. The AS1411-C8 repressed c-MYC expression at the transcriptional level, possibly due to C8 ability to stabilize the c-MYC promoter G-quadruplexes. Overall, this study demonstrates the usefulness of AS1411 as a supramolecular carrier of the G-quadruplex binder C8 and the potential of using its tumour-selective properties for the delivery of ligands for cancer therapy.
CIMAGO iCBR CIBB Faculdade de Medicina da Universidade de Coimbra Coimbra Portugal
Institute of Biophysics AS CR v v i Kralovopolska 135 612 65 Brno Czech Republic
Univ Bordeaux ARNA laboratory INSERM U1212 CNRS UMR 5320 IECB F 33600 Pessac France
Zobrazit více v PubMed
Bates PJ, Laber Da, Miller DM, Thomas SD, Trent JO. Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp. Mol. Pathol. 2009;86:151–164. doi: 10.1016/j.yexmp.2009.01.004. PubMed DOI PMC
Bates PJ, et al. G-quadruplex oligonucleotide AS1411 as a cancer-targeting agent: Uses and mechanisms. Biochim. Biophys. Acta - Gen. Subj. 2017;1861:1414–1428. doi: 10.1016/j.bbagen.2016.12.015. PubMed DOI
Mongelard F, Bouvet P. Nucleolin: a multiFACeTed protein. Trends Cell Biol. 2007;17:80–86. doi: 10.1016/j.tcb.2006.11.010. PubMed DOI
Reyes-Reyes EM, Šalipur FR, Shams M, Forsthoefel MK, Bates PJ. Mechanistic studies of anticancer aptamer AS1411 reveal a novel role for nucleolin in regulating Rac1 activation. Mol. Oncol. 2015;9:1392–1405. doi: 10.1016/j.molonc.2015.03.012. PubMed DOI PMC
Shieh YA, Yang SJ, Wei MF, Shieh MJ. Aptamer-based tumor-targeted drug delivery for photodynamic therapy. ACS Nano. 2010;4:1433–1442. doi: 10.1021/nn901374b. PubMed DOI
Carvalho J, et al. Fluorescent light-up acridine orange derivatives bind and stabilize KRAS-22RT G-quadruplex. Biochimie. 2018;144:144–152. doi: 10.1016/j.biochi.2017.11.004. PubMed DOI
Pereira E, et al. Evaluation of Acridine Orange Derivatives as DNA-Targeted Radiopharmaceuticals for Auger Therapy: Influence of the Radionuclide and Distance to DNA. Sci. Rep. 2017;7:42544. doi: 10.1038/srep42544. PubMed DOI PMC
Mergny J-L, Li J, Lacroix L, Amrane S, Chaires JB. Thermal difference spectra: A specific signature for nucleic acid structures. Nucleic Acids Res. 2005;33:1–6. doi: 10.1093/nar/gki148. PubMed DOI PMC
Kumar, P., Nagarajan, A. & Uchil, P. D. Analysis of Cell Viability by the Lactate Dehydrogenase Assay. Cold Spring Harb. Protoc. 465–469, 10.1101/pdb.prot095497 (2018). PubMed
De Rache A, Mergny J-LL. Assessment of selectivity of G-quadruplex ligands via an optimised FRET melting assay. Biochimie. 2015;115:194–202. doi: 10.1016/j.biochi.2015.06.002. PubMed DOI
Loureiro A, et al. Absence of Albumin Improves in Vitro Cellular Uptake and Disruption of Poloxamer 407-Based Nanoparticles inside Cancer Cells. Mol. Pharm. 2018;15:527–535. doi: 10.1021/acs.molpharmaceut.7b00893. PubMed DOI
Gao, S., Zheng, X., Jiao, B. & Wang, L. Post-SELEX optimization of aptamers. Anal. Bioanal. Chem. 4567–4573, 10.1007/s00216-016-9556-2 (2016). PubMed
Olsen, C. M. & Marky, L. A. Energetic and hydration contributions of the removal of methyl groups from thymine to form uracil in G-quadruplexes. J. Phys. Chem. B, 10.1021/jp808526d (2009). PubMed
Dailey MM, Clarke Miller M, Bates PJ, Lane AN, Trent JO. Resolution and characterization of the structural polymorphism of a single quadruplex-forming sequence. Nucleic Acids Res. 2010;38:4877–4888. doi: 10.1093/nar/gkq166. PubMed DOI PMC
Karsisiotis AI, et al. Angew. Chemie - Int. Ed. 2011. Topological characterization of nucleic acid G-quadruplexes by UV absorption and circular dichroism; pp. 10645–10648. PubMed
Pedersen EB, Nielsen JT, Nielsen C, Filichev VV. Enhanced anti-HIV-1 activity of G-quadruplexes comprising locked nucleic acids and intercalating nucleic acids. Nucleic Acids Res. 2011;39:2470–2481. doi: 10.1093/nar/gkq1133. PubMed DOI PMC
Bing, T. et al. Triplex-quadruplex structural scaffold: A new binding structure of aptamer. Sci. Rep., 10.1038/s41598-017-15797-5 (2017). PubMed PMC
Lecarme, L. et al. Interaction of Polycationic Ni (II)-Salophen Complexes with G-Quadruplex DNA. (2014). PubMed
Hasegawa, H., Savory, N., Abe, K. & Ikebukuro, K. Methods for improving aptamer binding affinity. Molecules21 (2016). PubMed PMC
D’Onofrio J, et al. 5′-Modified G-quadruplex forming oligonucleotides endowed with anti-HIV activity: Synthesis and biophysical properties. Bioconjug. Chem. 2007;18:1194–1204. doi: 10.1021/bc070062f. PubMed DOI
Bates PJ, Kahlon JB, Thomas SD, Trent JO, Miller DM. Antiproliferative activity of G-rich oligonucleotides correlates with protein binding. J. Biol. Chem. 1999;274:26369–26377. doi: 10.1074/jbc.274.37.26369. PubMed DOI
Girvan AC, et al. AGRO100 inhibits activation of nuclear factor-Œ∫B (NF-Œ∫B) by forming a complex with NF-Œ∫B essential modulator (NEMO) and nucleolin. Mol. Cancer Ther. 2006;5:1790–1799. doi: 10.1158/1535-7163.MCT-05-0361. PubMed DOI
Arzumanov, A. et al. Inhibition of HIV-1 Tat-dependent trans activation by steric block chimeric 2′-O-methyl/LNA oligoribonucleotides. Biochemistry 40, 14645–54 (2001). PubMed
Rai Y, et al. Mitochondrial biogenesis and metabolic hyperactivation limits the application of MTT assay in the estimation of radiation induced growth inhibition. Sci. Rep. 2018;8:1–15. doi: 10.1038/s41598-017-17765-5. PubMed DOI PMC
Yoshimasu T, et al. A theoretical model for the hormetic dose-response curve for anticancer agents. Anticancer Res. 2015;35:5851–5855. PubMed
Ursini CL, et al. Study of Cytotoxic and Genotoxic Effects of Hydroxyl-Functionalized Multiwalled Carbon Nanotubes on Human Pulmonary Cells. J. Nanomater. 2012;2012:1–9. doi: 10.1155/2012/815979. DOI
Kornienko A, Rastogi SK, Lefranc F, Kiss R. Therapeutic Agents Triggering Nonapoptotic Cancer Cell Death. J. Med. Chem. 2013;56:4823–4839. doi: 10.1021/jm400136m. PubMed DOI
Fan X, Sun L, Wu Y, Zhang L, Yang Z. Bioactivity of 2′-deoxyinosine-incorporated aptamer AS1411. Sci. Rep. 2016;6:25799. doi: 10.1038/srep25799. PubMed DOI PMC
Fan X, et al. The Bioactivity of D-/L-Isonucleoside- and 2′-Deoxyinosine-Incorporated Aptamer AS1411s Including DNA Replication/MicroRNA Expression. Mol. Ther. - Nucleic Acids. 2017;9:218–229. doi: 10.1016/j.omtn.2017.09.010. PubMed DOI PMC
Dapić V, et al. Biophysical and biological properties of quadruplex oligodeoxyribonucleotides. Nucleic Acids Res. 2003;31:2097–2107. doi: 10.1093/nar/gkg316. PubMed DOI PMC
Hurley LH, Von Hoff DD, Siddiqui-Jain A, Yang D. Drug Targeting of the c-MYC Promoter to Repress Gene Expression via a G-Quadruplex Silencer Element. Semin. Oncol. 2006;33:498–512. doi: 10.1053/j.seminoncol.2006.04.012. PubMed DOI
Chauhan A, et al. Synthesis of Fluorescent Binaphthyl Amines That Bind c-MYC G-Quadruplex DNA and Repress c-MYC Expression. J. Med. Chem. 2016;59:7275–7281. doi: 10.1021/acs.jmedchem.6b00328. PubMed DOI
Sharma VR, et al. Nucleolin Overexpression Confers Increased Sensitivity to the Anti-Nucleolin Aptamer, AS1411. Cancer Invest. 2018;36:475–491. doi: 10.1080/07357907.2018.1527930. PubMed DOI PMC
Reyes-Reyes EM, Teng Y, Bates PJ. A new paradigm for aptamer therapeutic AS1411 action: Uptake by macropinocytosis and its stimulation by a nucleolin-dependent mechanism. Cancer Res. 2010;70:8617–8629. doi: 10.1158/0008-5472.CAN-10-0920. PubMed DOI PMC
G-Quadruplex Aptamer-Ligand Characterization