G-Quadruplex Aptamer-Ligand Characterization
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
36296374
PubMed Central
PMC9609330
DOI
10.3390/molecules27206781
PII: molecules27206781
Knihovny.cz E-resources
- Keywords
- G-quadruplex aptamer, aptamer–ligand interactions, biophysical techniques, ligands,
- MeSH
- Aptamers, Nucleotide * chemistry MeSH
- G-Quadruplexes * MeSH
- Humans MeSH
- Ligands MeSH
- Tongue Neoplasms * MeSH
- Carcinoma, Squamous Cell * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Aptamers, Nucleotide * MeSH
- Ligands MeSH
In this work we explore the structure of a G-rich DNA aptamer termed AT11-L2 (TGGTGGTGGTTGTTGTTGGTGGTGGTGGT; derivative of AT11) by evaluating the formation and stability of G-quadruplex (G4) conformation under different experimental conditions such as KCl concentration, temperature, and upon binding with a variety of G4 ligands (360A, BRACO-19, PDS, PhenDC3, TMPyP4). We also determined whether nucleolin (NCL) can be a target of AT11-L2 G4. Firstly, we assessed by circular dichroism, UV and NMR spectroscopies the formation of G4 by AT11-L2. We observed that, for KCl concentrations of 65 mM or less, AT11-L2 adopts hybrid or multiple topologies. In contrast, a parallel topology predominates for buffer containing 100 mM of KCl. The Tm of AT11-L2 in 100 mM of KCl is 38.9 °C, proving the weak stability of this sequence. We also found that upon titration with two molar equivalents of 360A, BRACO-19 and PhenDC3, the G4 is strongly stabilized and its topology is maintained, while the addition of 3.5 molar equivalents of TMPyP4 promotes the disruption of G4. The KD values between AT11-L2 G4, ligands and NCL were obtained by fluorescence titrations and are in the range of µM for ligand complexes and nM when adding NCL. In silico studies suggest that four ligands bind to the AT11-L2 G4 structure by stacking interactions, while the RBD1,2 domains of NCL interact preferentially with the thymines of AT11-L2 G4. Finally, AT11-L2 G4 co-localized with NCL in NCL-positive tongue squamous cell carcinoma cell line.
See more in PubMed
Roxo C., Kotkowiak W., Pasternak A. Molecules G-Quadruplex-Forming Aptamers-Characteristics, Applications, and Perspectives. Molecules. 2019;24:3781. doi: 10.3390/molecules24203781. PubMed DOI PMC
Ni X., Castanares M., Mukherjee A., Lupold S.E. Nucleic Acid Aptamers: Clinical Applications and Promising New Horizons. Curr. Med. Chem. 2011;18:4206–4214. doi: 10.2174/092986711797189600. PubMed DOI PMC
Sun H., Zhu X., Lu P.Y., Rosato R.R., Tan W., Zu Y. Oligonucleotide Aptamers: New Tools for Targeted Cancer Therapy. Mol. Ther. Nucleic Acids. 2014;3:e182. doi: 10.1038/mtna.2014.32. PubMed DOI PMC
Fang X., Tan W. Aptamers Generated from Cell-SELEX for Molecular Medicine: A Chemical Biology Approach. Acc. Chem. Res. 2010;43:48–57. doi: 10.1021/ar900101s. PubMed DOI PMC
Duan M., Long Y., Yang C., Wu X., Sun Y., Li J., Hu X., Lin W., Han D., Zhao Y., et al. Selection and Characterization of DNA Aptamer for Metastatic Prostate Cancer Recognition and Tissue Imaging. Oncotarget. 2016;7:36436–36446. doi: 10.18632/oncotarget.9262. PubMed DOI PMC
Zhou J., Rossi J. Aptamers as Targeted Therapeutics: Current Potential and Challenges. Nat. Rev. Drug Discov. 2016;16:181–202. doi: 10.1038/nrd.2016.199. PubMed DOI PMC
O Tucker W.O., T Shum K., A Tanner J. G-Quadruplex DNA Aptamers and Their Ligands: Structure, Function and Application. Curr. Pharm. Des. 2012;18:2014–2026. doi: 10.2174/138161212799958477. PubMed DOI
Do N.Q., Chung W.J., Truong T.H.A., Heddi B., Phan A.T. G-Quadruplex Structure of an Anti-Proliferative DNA Sequence. Nucleic Acids Res. 2017;45:7487–7493. doi: 10.1093/nar/gkx274. PubMed DOI PMC
Ugrinova I., Petrova M., Chalabi-Dchar M., Bouvet P. Multifaceted Nucleolin Protein and Its Molecular Partners in Oncogenesis. Adv. Protein. Chem. Struct. Biol. 2018;111:133–164. doi: 10.1016/BS.APCSB.2017.08.001. PubMed DOI
Carvalho J., Lopes-Nunes J., Lopes A.C., Cabral Campello M.P., Paulo A., Queiroz J.A., Cruz C. Aptamer-Guided Acridine Derivatives for Cervical Cancer. Org. Biomol. Chem. 2019;17:2992–3002. doi: 10.1039/C9OB00318E. PubMed DOI
Figueiredo J., Lopes-Nunes J., Carvalho J., Antunes F., Ribeiro M., Campello M.P.C., Paulo A., Paiva A., Salgado G.F., Queiroz J.A., et al. AS1411 Derivatives as Carriers of G-Quadruplex Ligands for Cervical Cancer Cells. Int. J. Pharm. 2019;568:118511. doi: 10.1016/j.ijpharm.2019.118511. PubMed DOI
Lopes-Nunes J., Carvalho J., Figueiredo J., Ramos C.I.V., Lourenço L.M.O., Tomé J.P.C., Neves M.G.P.M.S., Mergny J.L., Queiroz J.A., Salgado G.F., et al. Phthalocyanines for G-Quadruplex Aptamers Binding. Bioorg. Chem. 2020;100:103920. doi: 10.1016/j.bioorg.2020.103920. PubMed DOI
Santos T., Lopes-Nunes J., Alexandre D., Miranda A., Figueiredo J., Silva M.S., Mergny J.L., Cruz C. Stabilization of a DNA Aptamer by Ligand Binding. Biochimie. 2022;200:8–18. doi: 10.1016/j.biochi.2022.05.002. PubMed DOI
Keefe A.D., Pai S., Ellington A. Aptamers as Therapeutics. Nat. Rev. Drug Discov. 2010;9:537–550. doi: 10.1038/nrd3141. PubMed DOI PMC
Wu X., Zhao Z., Bai H., Fu T., Yang C., Hu X., Liu Q., Champanhac C., Teng I.T., Ye M., et al. DNA Aptamer Selected against Pancreatic Ductal Adenocarcinoma for in Vivo Imaging and Clinical Tissue Recognition. Theranostics. 2015;5:985–994. doi: 10.7150/thno.11938. PubMed DOI PMC
Bates P.J., Reyes-Reyes E.M., Malik M.T., Murphy E.M., O’Toole M.G., Trent J.O. G-Quadruplex Oligonucleotide AS1411 as a Cancer-Targeting Agent: Uses and Mechanisms. Biochim. Biophys. Acta. Gen. Subj. 2017;1861:1414–1428. doi: 10.1016/j.bbagen.2016.12.015. PubMed DOI
Carvalho J., Queiroz J.A., Cruz C. Circular Dichroism of G-Quadruplex: A Laboratory Experiment for the Study of Topology and Ligand Binding. J. Chem. Educ. 2017;94:1547–1551. doi: 10.1021/acs.jchemed.7b00160. DOI
Miranda A., Santos T., Largy E., Cruz C. Locking up the AS1411 Aptamer with a Flanking Duplex: Towards an Improved Nucleolin-Targeting. Pharmaceuticals. 2021;14:121. doi: 10.3390/ph14020121. PubMed DOI PMC
Mergny J.L., Li J., Lacroix L., Amrane S., Chaires J.B. Thermal Difference Spectra: A Specific Signature for Nucleic Acid Structures. Nucleic Acids Res. 2005;33:e138. doi: 10.1093/nar/gni134. PubMed DOI PMC
Mergny J.L., Phan A.T., Lacroix L. Following G-Quartet Formation by UV-Spectroscopy. FEBS Lett. 1998;435:74–78. doi: 10.1016/S0014-5793(98)01043-6. PubMed DOI
Haldar S., Zhang Y., Xia Y., Islam B., Liu S., Gervasio F.L., Mulholland A.J., Waller Z.A.E., Wei D., Haider S. Mechanistic Insights into the Ligand-Induced Unfolding of an RNA G-Quadruplex. J. Am. Chem. Soc. 2022;144:935–950. doi: 10.1021/jacs.1c11248. PubMed DOI
Joshi S., Singh A., Kukreti S. Porphyrin Induced Structural Destabilization of a Parallel DNA G-quadruplex in Human MRP1 Gene Promoter. J. Mol. Recognit. 2022;35:e2950. doi: 10.1002/jmr.2950. PubMed DOI
Zhao Y., Uhler J.P. Identification of a G-Quadruplex Forming Sequence in the Promoter of UCP1. Acta Biochim. Biophys. Sin. 2018;50:718–722. doi: 10.1093/abbs/gmy059. PubMed DOI
Zamiri B., Reddy K., Macgregor R.B., Pearson C.E. TMPyP4 Porphyrin Distorts RNA G-Quadruplex Structures of the Disease-Associated r(GGGGCC)n Repeat of the C9orf72 Gene and Blocks Interaction of RNA-Binding Proteins. J. Biol. Chem. 2014;289:4653–4659. doi: 10.1074/jbc.C113.502336. PubMed DOI PMC
Phan A.T., Kuryavyi V., Gaw H.Y., Patel D.J. Small-Molecule Interaction with a Five-Guanine-Tract G-Quadruplex Structure from the Human MYC Promoter. Nat. Chem. Biol. 2005;1:167–173. doi: 10.1038/nchembio723. PubMed DOI PMC
Santos T., Miranda A., Imbert L., Monchaud D., Salgado G.F., Cabrita E.J., Cruz C. Targeting a G-Quadruplex from Let-7e Pre-MiRNA with Small Molecules and Nucleolin. J. Pharm. Biomed. Anal. 2022;215:114757. doi: 10.1016/j.jpba.2022.114757. PubMed DOI
Imbert L., Lenoir-Capello R., Crublet E., Vallet A., Awad R., Ayala I., Juillan-Binard C., Mayerhofer H., Kerfah R., Gans P., et al. In Vitro Production of Perdeuterated Proteins in H2O for Biomolecular NMR Studies. Methods Mol. Biol. 2021;2199:127–149. doi: 10.1007/978-1-0716-0892-0_8/FIGURES/4. PubMed DOI
Carvalho J., Paiva A., Campello M.P.C., Paulo A., Mergny J.L., Salgado G.F., Queiroz J.A., Cruz C. Aptamer-Based Targeted Delivery of a G-Quadruplex Ligand in Cervical Cancer Cells. Sci. Rep. 2019;9:7945. doi: 10.1038/s41598-019-44388-9. PubMed DOI PMC
Bolte S., Cordelières F.P. A Guided Tour into Subcellular Colocalization Analysis in Light Microscopy. J. Microsc. 2006;224:213–232. doi: 10.1111/j.1365-2818.2006.01706.x. PubMed DOI