Quantification of cellular protein and redox imbalance using SILAC-iodoTMT methodology

. 2019 Jun ; 24 () : 101227. [epub] 20190521

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31154163
Odkazy

PubMed 31154163
PubMed Central PMC6545335
DOI 10.1016/j.redox.2019.101227
PII: S2213-2317(19)30131-4
Knihovny.cz E-zdroje

Under normal conditions, the cellular redox status is maintained in a steady state by reduction and oxidation processes. These redox alterations in the cell are mainly sensed by protein thiol residues of cysteines thus regulating protein function. The imbalance in redox homeostasis may therefore regulate protein turnover either directly by redox modulating of transcription factors or indirectly by the degradation of damaged proteins due to oxidation. A new analytical method capable of simultaneously assessing cellular protein expression and cysteine oxidation would provide a valuable tool for the field of cysteine-targeted biology. Here, we show a workflow based on protein quantification using metabolic labeling and determination of cysteine oxidation using reporter ion quantification. We applied this approach to determine protein and redox changes in cells after 5-min, 60-min and 32-h exposure to H2O2, respectively. Based on the functional analysis of our data, we confirmed a biological relevance of this approach and its applicability for parallel mapping of cellular proteomes and redoxomes under diverse conditions. In addition, we revealed a specific pattern of redox changes in peroxiredoxins in a short time-interval cell exposure to H2O2. Overall, our present study offers an innovative, versatile experimental approach to the multifaceted assessment of cellular proteome and its redox status, with broad implications for biomedical research towards a better understanding of organismal physiology and diverse disease conditions.

Zobrazit více v PubMed

Lu J.M., Lin P.H., Yao Q., Chen C. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J. Cell Mol. Med. 2010;14(4):840–860. PubMed PMC

J.M. Lu, P.H. Lin, Q. Yao, C. Chen, Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems, J Cell Mol Med 14(4) (2010) 840-860. PubMed PMC

Davies K.J. Degradation of oxidized proteins by the 20S proteasome. Biochimie. 2001;83(3–4):301–310. PubMed

K.J. Davies, Degradation of oxidized proteins by the 20S proteasome, Biochimie 83(3-4) (2001) 301-310. PubMed

Toussaint O., Houbion A., Remacle J. Aging as a multi-step process characterized by a lowering of entropy production leading the cell to a sequence of defined stages. II. Testing some predictions on aging human fibroblasts in culture. Mech. Ageing Dev. 1992;65(1):65–83. PubMed

O. Toussaint, A. Houbion, J. Remacle, Aging as a multi-step process characterized by a lowering of entropy production leading the cell to a sequence of defined stages. II. Testing some predictions on aging human fibroblasts in culture, Mech Ageing Dev 65(1) (1992) 65-83. PubMed

Chen Q., Ames B.N. Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proc. Natl. Acad. Sci. Unit. States Am. 1994;91(10):4130–4134. PubMed PMC

Q. Chen, B.N. Ames, Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells, Proceedings of the National Academy of Sciences 91(10) (1994) 4130-4134. PubMed PMC

Holze C., Michaudel C., Mackowiak C., Haas D.A., Benda C., Hubel P., Pennemann F.L., Schnepf D., Wettmarshausen J., Braun M., Leung D.W., Amarasinghe G.K., Perocchi F., Staeheli P., Ryffel B., Pichlmair A. Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nat. Immunol. 2018;19(2):130–140. PubMed PMC

C. Holze, C. Michaudel, C. Mackowiak, D.A. Haas, C. Benda, P. Hubel, F.L. Pennemann, D. Schnepf, J. Wettmarshausen, M. Braun, D.W. Leung, G.K. Amarasinghe, F. Perocchi, P. Staeheli, B. Ryffel, A. Pichlmair, Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway, Nature Immunology 19(2) (2018) 130-140. PubMed PMC

Chandra J., Samali A., Orrenius S. Triggering and modulation of apoptosis by oxidative stress. Free Radic. Biol. Med. 2000;29(3–4):323–333. PubMed

J. Chandra, A. Samali, S. Orrenius, Triggering and modulation of apoptosis by oxidative stress, Free Radic Biol Med 29(3-4) (2000) 323-333. PubMed

Qu Z., Meng F., Bomgarden R.D., Viner R.I., Li J., Rogers J.C., Cheng J., Greenlief C.M., Cui J., Lubahn D.B., Sun G.Y., Gu Z. Proteomic quantification and site-mapping of S-nitrosylated proteins using isobaric iodoTMT reagents. J. Proteome Res. 2014;13(7):3200–3211. PubMed PMC

Z. Qu, F. Meng, R.D. Bomgarden, R.I. Viner, J. Li, J.C. Rogers, J. Cheng, C.M. Greenlief, J. Cui, D.B. Lubahn, G.Y. Sun, Z. Gu, Proteomic quantification and site-mapping of S-nitrosylated proteins using isobaric iodoTMT reagents, J Proteome Res 13(7) (2014) 3200-3211. PubMed PMC

Pan K.T., Chen Y.Y., Pu T.H., Chao Y.S., Yang C.Y., Bomgarden R.D., Rogers J.C., Meng T.C., Khoo K.H. Mass spectrometry-based quantitative proteomics for dissecting multiplexed redox cysteine modifications in nitric oxide-protected cardiomyocyte under hypoxia. Antioxidants Redox Signal. 2014;20(9):1365–1381. PubMed PMC

K.T. Pan, Y.Y. Chen, T.H. Pu, Y.S. Chao, C.Y. Yang, R.D. Bomgarden, J.C. Rogers, T.C. Meng, K.H. Khoo, Mass spectrometry-based quantitative proteomics for dissecting multiplexed redox cysteine modifications in nitric oxide-protected cardiomyocyte under hypoxia, Antioxid Redox Signal 20(9) (2014) 1365-1381. PubMed PMC

Ong S.E., Blagoev B., Kratchmarova I., Kristensen D.B., Steen H., Pandey A., Mann M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteom. 2002;1(5):376–386. PubMed

S.E. Ong, B. Blagoev, I. Kratchmarova, D.B. Kristensen, H. Steen, A. Pandey, M. Mann, Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics, Mol Cell Proteomics 1(5) (2002) 376-386. PubMed

Wojdyla K., Rogowska-Wrzesinska A. Differential alkylation-based redox proteomics – lessons learnt. Redox Biol. 2015;6:240–252. PubMed PMC

K. Wojdyla, A. Rogowska-Wrzesinska, Differential alkylation-based redox proteomics - Lessons learnt, Redox biology 6 (2015) 240-252. PubMed PMC

Cox J., Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26(12):1367–1372. PubMed

J. Cox, M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat Biotechnol 26(12) (2008) 1367-1372. PubMed

Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., Pérez E., Uszkoreit J., Pfeuffer J., Sachsenberg T., Yilmaz S., Tiwary S., Cox J., Audain E., Walzer M., Jarnuczak A.F., Ternent T., Brazma A., Vizcaíno J.A. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47(D1):D442–D450. PubMed PMC

Y. Perez-Riverol, A. Csordas, J. Bai, M. Bernal-Llinares, S. Hewapathirana, D.J. Kundu, A. Inuganti, J. Griss, G. Mayer, M. Eisenacher, E. Perez, J. Uszkoreit, J. Pfeuffer, T. Sachsenberg, S. Yilmaz, S. Tiwary, J. Cox, E. Audain, M. Walzer, A.F. Jarnuczak, T. Ternent, A. Brazma, J.A. Vizcaino, The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 47(D1) (2019) D442-D450. PubMed PMC

Hwang P.M., Bunz F., Yu J., Rago C., Chan T.A., Murphy M.P., Kelso G.F., Smith R.A., Kinzler K.W., Vogelstein B. Ferredoxin reductase affects p53-dependent, 5-fluorouracil-induced apoptosis in colorectal cancer cells. Nat. Med. 2001;7(10):1111–1117. PubMed PMC

P.M. Hwang, F. Bunz, J. Yu, C. Rago, T.A. Chan, M.P. Murphy, G.F. Kelso, R.A. Smith, K.W. Kinzler, B. Vogelstein, Ferredoxin reductase affects p53-dependent, 5-fluorouracil-induced apoptosis in colorectal cancer cells, Nat Med 7(10) (2001) 1111-1117. PubMed PMC

Liu G., Chen X. The ferredoxin reductase gene is regulated by the p53 family and sensitizes cells to oxidative stress-induced apoptosis. Oncogene. 2002;21(47):7195–7204. PubMed

G. Liu, X. Chen, The ferredoxin reductase gene is regulated by the p53 family and sensitizes cells to oxidative stress-induced apoptosis, Oncogene 21(47) (2002) 7195-7204. PubMed

Bensaad K., Tsuruta A., Selak M.A., Vidal M.N., Nakano K., Bartrons R., Gottlieb E., Vousden K.H. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 2006;126(1):107–120. PubMed

K. Bensaad, A. Tsuruta, M.A. Selak, M.N. Vidal, K. Nakano, R. Bartrons, E. Gottlieb, K.H. Vousden, TIGAR, a p53-inducible regulator of glycolysis and apoptosis, Cell 126(1) (2006) 107-120. PubMed

Itoh N., Yonehara S., Ishii A., Yonehara M., Mizushima S., Sameshima M., Hase A., Seto Y., Nagata S. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell. 1991;66(2):233–243. PubMed

N. Itoh, S. Yonehara, A. Ishii, M. Yonehara, S. Mizushima, M. Sameshima, A. Hase, Y. Seto, S. Nagata, The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis, Cell 66(2) (1991) 233-243. PubMed

Balasubramanian M.N., Butterworth E.A., Kilberg M.S. Asparagine synthetase: regulation by cell stress and involvement in tumor biology. Am. J. Physiol. Endocrinol. Metab. 2013;304(8):E789–E799. PubMed PMC

M.N. Balasubramanian, E.A. Butterworth, M.S. Kilberg, Asparagine synthetase: regulation by cell stress and involvement in tumor biology, Am J Physiol Endocrinol Metab 304(8) (2013) E789-E799. PubMed PMC

Brandes N., Reichmann D., Tienson H., Leichert L.I., Jakob U. Using quantitative redox proteomics to dissect the yeast redoxome. J. Biol. Chem. 2011;286(48):41893–41903. PubMed PMC

N. Brandes, D. Reichmann, H. Tienson, L.I. Leichert, U. Jakob, Using quantitative redox proteomics to dissect the yeast redoxome, J Biol Chem 286(48) (2011) 41893-41903. PubMed PMC

Araki K., Kusano H., Sasaki N., Tanaka R., Hatta T., Fukui K., Natsume T. Redox sensitivities of global cellular cysteine residues under reductive and oxidative stress. J. Proteome Res. 2016;15(8):2548–2559. PubMed

K. Araki, H. Kusano, N. Sasaki, R. Tanaka, T. Hatta, K. Fukui, T. Natsume, Redox Sensitivities of Global Cellular Cysteine Residues under Reductive and Oxidative Stress, J Proteome Res 15(8) (2016) 2548-2559. PubMed

Fu L., Liu K.K., Sun M.A., Tian C.P., Sun R., Morales Betanzos C., Tallman K.A., Porter N.A., Yang Y., Guo D.J., Liebler D.C., Yang J. Systematic and quantitative assessment of hydrogen peroxide reactivity with cysteines across human proteomes. Mol. Cell. Proteom. 2017;16(10):1815–1828. PubMed PMC

L. Fu, K.K. Liu, M.A. Sun, C.P. Tian, R. Sun, C. Morales Betanzos, K.A. Tallman, N.A. Porter, Y. Yang, D.J. Guo, D.C. Liebler, J. Yang, Systematic and quantitative assessment of hydrogen peroxide reactivity with cysteines across human proteomes, Mol Cell Proteomics 16(10) (2017) 1815-1828. PubMed PMC

Sun M.A., Wang Y., Cheng H., Zhang Q., Ge W., Guo D. RedoxDB--a curated database for experimentally verified protein oxidative modification. Bioinformatics. 2012;28(19):2551–2552. PubMed

M.A. Sun, Y. Wang, H. Cheng, Q. Zhang, W. Ge, D. Guo, RedoxDB--a curated database for experimentally verified protein oxidative modification, Bioinformatics 28(19) (2012) 2551-2552. PubMed

Go Y.M., Duong D.M., Peng J., Jones D.P. Protein cysteines map to functional networks according to steady-state level of oxidation. J. Proteom. Bioinform. 2011;4(10):196–209. PubMed PMC

Y.M. Go, D.M. Duong, J. Peng, D.P. Jones, Protein Cysteines Map to Functional Networks According to Steady-state Level of Oxidation, Journal of proteomics & bioinformatics 4(10) (2011) 196-209. PubMed PMC

Netto L.E., Antunes F. The roles of peroxiredoxin and thioredoxin in hydrogen peroxide sensing and in signal transduction. Mol. Cells. 2016;39(1):65–71. PubMed PMC

L.E. Netto, F. Antunes, The Roles of Peroxiredoxin and Thioredoxin in Hydrogen Peroxide Sensing and in Signal Transduction, Mol Cells 39(1) (2016) 65-71. PubMed PMC

Neumann C.A., Cao J., Manevich Y. Peroxiredoxin 1 and its role in cell signaling. Cell Cycle. 2009;8(24):4072–4078. PubMed PMC

C.A. Neumann, J. Cao, Y. Manevich, Peroxiredoxin 1 and its role in cell signaling, Cell Cycle 8(24) (2009) 4072-4078. PubMed PMC

Barranco-Medina S., Lazaro J.J., Dietz K.J. The oligomeric conformation of peroxiredoxins links redox state to function. FEBS Lett. 2009;583(12):1809–1816. PubMed

S. Barranco-Medina, J.J. Lazaro, K.J. Dietz, The oligomeric conformation of peroxiredoxins links redox state to function, FEBS Lett 583(12) (2009) 1809-1816. PubMed

Wu C., Dai H., Yan L., Liu T., Cui C., Chen T., Li H. Sulfonation of the resolving cysteine in human peroxiredoxin 1: a comprehensive analysis by mass spectrometry. Free Radic. Biol. Med. 2017;108:785–792. PubMed PMC

C. Wu, H. Dai, L. Yan, T. Liu, C. Cui, T. Chen, H. Li, Sulfonation of the resolving cysteine in human peroxiredoxin 1: A comprehensive analysis by mass spectrometry, Free Radic Biol Med 108 (2017) 785-792. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...