Proflavine/acriflavine derivatives with versatile biological activities
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
31222780
DOI
10.1002/jat.3818
Knihovny.cz E-zdroje
- Klíčová slova
- 3,6-di-substituted acridines, 3,6-diaminoacridine, acriflavine, anti-inflammatory, cytotoxicity, proflavine,
- MeSH
- akriflavin analogy a deriváty farmakologie toxicita MeSH
- antiinfekční látky farmakologie toxicita MeSH
- antitumorózní látky farmakologie toxicita MeSH
- inhibiční koncentrace 50 MeSH
- lidé MeSH
- molekulární struktura MeSH
- proflavin analogy a deriváty farmakologie toxicita MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- akriflavin MeSH
- antiinfekční látky MeSH
- antitumorózní látky MeSH
- proflavin MeSH
Proflavine derivatives are extremely interesting chemotherapeutic agents, which have shown promising pharmaceutical potential due to their wide range of biological activities. This review summarizes the current state of research into the anticancer, antimicrobial, antimalarial and antileishmanial properties of these attractive compounds. Our attention has focused on new classes of proflavine conjugates, which display significant levels of anticancer activity. Highly promising cytotoxic properties have been identified in proflavine conjugates with imidazolidinones, ureas and thioureas. In particular, proflavine-dialkyldithioureas displayed substantial cytotoxic effect against the human leukemia HL-60 cells with IC50 values from 7.2 to 34.0 μm. As well, palladium complexes with proflavine ligand have important biologic activity. The LC50 values of these complexes were significantly lower than that of cisplatin against the SK-BR-3 cell line.
Zobrazit více v PubMed
Acheson, R. M. (1973). Acridines (2nd ed.) (pp. 789-814). New York - London - Sydney - Toronto: Interscience Publishers, John Wiley & Sons, The Antibacterial Action of Acridines.
Albert, A. (1966). The Acridines (2nd ed.). London: Edward Arnold Publishers Ltd.
Aslanoglu, M. (2006). Electrochemical and spectroscopic studies of the intercalation of proflavine with DNA. Analytical Science, 22, 439-443. https://doi.org/10.2116/analsci.22.439
Benchabane, Y., Di Giorgio, C., Boyer, G., Sabatier, A.-S., Allegro, D., Peyrot, V., & De Me'o, M. (2009). Photo-inducible cytotoxic and clastogenic activities of 3,6-di-substituted acridines obtained by acylation of proflavine. European Journal of Medicinal Chemistry, 44, 2459-2467. https://doi.org/10.1016/j.ejmech.2009.01.010
Bernhard, D., Schwaiger, W., Crazzolara, R., Tinhofer, I., Kofler, R., & Csordas, A. (2003). Enhanced MTT-reducing activity under growth inhibition by resveratrol in CEM-C7H2 lymphocytic leukemia cells. Cancer Letters, 195, 193-199. https://doi.org/10.1016/S0304-3835(03)00157-5
Blanquicett, C., Roman, J., & Hart, C. M. (2008). Thiazolidinones as anti-cancer agents. Cancer Therapy, 6(A), 25-34.
Bruzzone, S., Guida, L., Franco, L., Zocchi, E., Corte, G., & De Flora, A. (1998). Dimeric and tetrameric forms of catalytically active transmembrane CD38 in transfected HeLa cells. FEBS Letters, 433, 1873-3468. https://doi.org/10.1016/S0014-5793(98)00929-6
Cheng, K., Peng, S., Xu, C., & Sun, S. (2009). Porous hollow Fe3O4 nanoparticles for targeted delivery and controlled release of cisplatin. Journal of the American Chemical Society, 131, 10637-10644. https://doi.org/10.1021/ja903300f
Choi, S. H., Cho, J. Y., Chung, Y. S., Hong, E., Han, Y., & Kim, S. G. (2000). Inhibition of lipopolysaccharide-induced I-kappaB degradation and tumor necrosis factor-alpha expression by acriflavine, an antimicrobial agent. International Journal of Immunopharmacology, 22(10), 775-787. https://doi.org/10.1016/S0192-0561(00)00039-4
Dai, Q., Liu, H., Gao, C., Li, W., Zhu, C., Lin, C., … Jiang, Y. (2018). A one-step synthesized acridine-based fluorescent chemosensor for selective detection of copper (II) ions and living cell imaging. New Journal of Chemistry, 1, 1-8. https://doi.org/10.1039/C7NJ03615A
Dana, S., Prusty, D., Dhayal, D., Gupta, M. H., Dar, A., Sen, S., … Dhar, S. K. (2014). Potent antimalarial activity of acriflavine in vitro and in vivo. ACS Chemical Biology, 9(10), 2366-2373. https://doi.org/10.1021/cb500476q
Demeunynck, M. (2004). Antitumor acridines. Expert Opinion on Therapeutic Patents, 14, 55-70. https://doi.org/10.1517/13543776.14.1.55
Denny, W. A. (2002). Acridine derivatives as chemotherapeutic agents. Current Medicinal Chemistry, 9, 1655-1665. https://doi.org/10.2174/0929867023369277
Denny, W. A., & Bagulley, B. C. (1994). In S. Neidle, & M. Waring (Eds.), Molecular aspects of anticancer drug-DNA interactions. Chapter 7 (pp. 270-311). London: Palgrave. https://doi.org/10.1007/978-1-349-13330-7
Di Giorgio, C., Shimi, K., Boyer, G., Delmasa, F., & Galy, J. P. (2007). Synthesis and antileishmanial activity of 6-mono-substituted and 3,6-di-substituted acridines obtained by acylation of proflavine. European Journal of Medicinal Chemistry, 42(10), 1277-1284. https://doi.org/10.1016/j.ejmech.2007.02.010
Eldaroti, H. H., Suad, A., Gadir, S. A., Refat, M. S., & Adam, A. M. A. (2013). Charge transfer complexes of the donor acriflavine and the acceptors quinol, picric acid, TCNQ and DDQ: synthesis, spectroscopic characterizations and antimicrobial studies. International Journal of Electrochemical Science, 8, 5774-5800.
Ferguson, L. R., & Denny, W. A. (1991). The genetic toxicology of acridines. Mutatation Research, 258, 123-160. https://doi.org/10.1016/0165-1110(91)90006-H
Gatasheh, M. K., Kannan, S., Hemalatha, K., & Imrana, N. (2017). Proflavine an acridine DNA intercalating agent and strong antimicrobial possessing potential properties of carcinogen. Karbala International Journal of Modern Science, 3, 272-278. https://doi.org/10.1016/j.kijoms.2017.07.003
Goodell, J. R., Madhok, A. A., Hiasa, H., & Ferguson, D. M. (2006). Synthesis and evaluation of acridine- and acridone-based anti-herpes agents with topoisomerase activity. Bioorganic and Medicinal Chemistry, 14, 5467-5480. https://doi.org/10.1016/j.bmc.2006.04.044
Hanaki, K.-I., Sekiguchi, J.-I., Shimada, K., Sato, A., Watari, H., Kojima, T., … Kirikae, T. (2011). Loop-mediated isothermal amplification assays for identification of antiseptic- and methicillin-resistant Staphylococcus aureus. Journal of Microbiological Methods, 84, 251-254. https://doi.org/10.1016/j.mimet.2010.12.004
Hoffmann, G. R., Ronan, M. V., Sylvia, K. E., & Tartaglione, J. P. (2009). Enhancement of the recombinagenic and mutagenic activities of bleomycin in yeast by intercalation of acridine compounds into DNA. Mutagenesis, 4, 317-329. https://doi.org/10.1093/mutage/gep012
Huang, W., Li, J., Zhang, W., Zhou, Y., Xie, C., Luo, Y., … Lu, W. (2006). Synthesis of miltirone analogues as inhibitors of Cdc25 phosphatases. Bioorganic & Medicinal Chemistry Letters, 16, 1905-1908. https://doi.org/10.1016/j.bmcl.2005.12.080
Janovec, L., Kozurkova, M., Sabolova, D., Ungvarsky, J., Paulikova, H., Plšikova, J., & Imrich, J. (2011). Cytotoxic 3,6-bis((imidazolidinone)imino)acridines: Synthesis, DNA binding and molecular modelling. Bioorganic & Medicinal Chemistry, 19, 1790-1801. https://doi.org/10.1016/j.bmc.2011.01.012
Janovec, L., Sabolova, D., Kozurkova, M., Paulikova, H., Kristian, P., Ungvarsky, J., … Imrich, J. (2007). Synthesis, DNA interaction, and cytotoxic activity of a novel proflavine-dithiazolidinone pharmacophore. Bioconjugate Chemistry, 18, 93-100. https://doi.org/10.1021/bc060168v
Kožurková, M., Sabolová, D., & Kristian, P. (2017). A review on acridinylthioureas and its derivatives: Biological and cytotoxic activity. Journal of Applied Toxicology, 37, 132-1139. https://doi.org/10.1002/jat.3464
Jarak, I., Kralj, M., Piantanida, I., Suman, L., Zinic, M., Pavelic, K., & Karminski-Zamola, G. (2006). Novel cyano- and amidino-substituted derivatives of thieno[2,3-b]- and thieno[3,2-b]thiophene-2-carboxanilides and thieno[3′,2′:4,5]thieno- and thieno[2′,3′:4,5]thieno [2,3-c]quinolones: synthesis, photochemical synthesis, DNA binding, and antitumor evaluation. Bioorganic & Medicinal Chemistry, 14, 2859-2868. https://doi.org/10.1016/j.bmc.2005.12.004
Ježek, J., Hlaváček, J., & Šebestík, J. (2017). Biomedical application of acridines. Progress in Drug Research 72. AG Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-63953-6
Joshi, H., Pal, T., & Ramaa, C. S. (2014). A new dawn for the use of thiazolidinones in cancer therapy. Expert Opinion on Investigational Drugs, 23(4), 501-510. https://doi.org/10.1517/13543784.2014.884708
Kawai, M., Yamada, S., Ishidoshiro, A., Oyamada, Y., Ito, H., & Yamagishi, J. (2009). Cell wall thickness: possible mechanism of acriflavine resistance in methicillin resistant Staphylococcus aureus. Journal of Medicinal Microbiology, 58(3), 331-336. https://doi.org/10.1099/jmm.0.004184-0
Kawai, M., & Yamagishi, J. (2009). Mechanisms of action of acriflavine: electron microscopic study of cell wall changes induced in Staphylococcus aureus by acriflavine. Microbiology and Immunology, 53, 481-486. https://doi.org/10.1111/j.1348-0421.2009.00151.x
Kozurkova, M., Kristian, P., Sabolova, D., & Danihel, I. (2014). Acridine Isothiocyanates: Chemistry and biology. Saarbrücken Germany: LAP LAMBERT Academic Publishing, 296 s. ISBN 978-3-659-24502-2.
Kozurkova, M., Sabolova, D., Janovec, L., Mikes, J., Koval, J., Ungvarsky, J., … Imrich, J. (2008). Cytotoxic activity of proflavine diureas: Synthesis, antitumor, evaluation and DNA binding properties of 1′,1″-(acridin-3,6-diyl)-3′,3″-dialkyldiureas. Bioorganic & Medicinal Chemistry, 16, 3976-3984. https://doi.org/10.1016/j.bmc.2008.01.026
Kumar, R., Kaur, M., & Kumari, M. (2012). Acridine: a versatile heterocyclic nucleus. Acta Poloniae Pharmaceutica. Drug Research, 69(1), 3-9.
Kuwai, T., Kitadai, Y., Tanaka, S., Onogawa, S., Matsutani, N., Kaio, E., … Chayama, K. (2003). Expression of hypoxia-inducible factor-1alpha is associated with tumor vascularization in human colorectal carcinoma. International Journal of Cancer, 105, 176-181. https://doi.org/10.1002/icj.11068
Laaksonen, T., Santos, H., Vihola, H., Salonen, J., Riikonen, J., Heikkilä, T., … Hirvonen, J. (2007). Failure of MTT as a toxicity testing agent for mesoporous silicon microparticles. Chemical Research in Toxicology, 20(12), 1913-1918. https://doi.org/10.1021/tx700326b
Leelavathi, M., Le, Y., Tohid, H., & Hasliza, A. (2011). Contact dermatitis presenting as non-healing wound: case report. Asia Pacific Family Medicine, 10(6), 1-3. https://doi.org/10.1186/1447-056X-10-6
Lerman, L. S. (1961). Structural considerations in the interaction of DNA and acridines. Journal of Molecular Biology, 3, 18-30. https://doi.org/10.1016/S0022-2836(61)80004-1
Li, G., Nelsen, C., & Hendrickson, E. A. (2002). Ku86 is essential in human somatic cells. Proceedings of the National Academy of Sciences of the United States of America, 99, 832-837. https://doi.org/10.1073/pnas.022649699
Lim, J., Goh, C. L., & Lee, C. T. (1991). Perioral and mucosal oedema due to contact allergy to proflavine. Contact Dermatitis, 25, 195-196. https://doi.org/10.1111/j.1600-0536.1991.tb01833.x
Liu, Y., Peterson, D. A., Kimura, H., & Schubert, D. (1997). Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. Journal of Neurochemistry, 69, 581-593.
Lopes, B. S., Hamouda, A., Findlay, J., & Amyes, S. G. (2011). Effect of frameshift mutagen acriflavine on control of resistance genes in Acinetobacter baumannii. Journal of Medical Microbiology, 60(2), 211-215. https://doi.org/10.1099/jmm.0.025544-0
Manchester, T., Cavalcanti, D. P., Zogovich, M., De Souza, W., & Motta, M. C. (2013). Acriflavine treatment promotes dyskinetoplasty in Trypanosoma cruzi as revealed by ultrastructural analysis. Parasitology, 140(11), 1422-1431. https://doi.org/10.1017/S0031182013001029
Monami, M., Dicembrini, I., & Mannucci, E. (2014). Thiazolidinones and cancer: results of a meta-analysis of randomized clinical trials. Acta Diabetologica, 51(1), 91-101. https://doi.org/10.1007/s00592-013-0504-8
Nicholson, B. H., & Peacoke, A. R. (1966). The inhibition of ribonucleic acid polymerase by acridines. Biochemical Journal, 100, 50-58. https://doi.org/10.1042/bj1000050
Pantano, N., Hunt, B., Schwarz, R. A., Parra, S., Cherry, K., Possati-Resende, J. C., … Richards-Kortum, R. (2018). Is proflavine exposure associated with disease progression in women with cervical dysplasia? A brief report. Photochemistry and Photobiology, 94(6), 1308-1313. https://doi.org/10.1111/php.12976
Pépin, G., Nejad, C., Thomas, B. J., Ferrand, J., McArthur, K., Bardin, P. G., … Gantier, M. P. (2017). Activation of cGAS-dependent antiviral responses by DNA intercalating agents. Nucleic Acids Research, 45, 198-205. https://doi.org/10.1093/nar/gkw878
Polat, Z. A., & Karakus, G. (2013). Cytotoxic effect of acriflavine against clinical isolates of Acanthamoeba spp. Parasitology Research, 112(2), 529-533. https://doi.org/10.1007/s00436-012-3163-8
Polyanskaya, T. V., Kazhdan, I., Motley, M., & Walmsley, A. (2010). Synthesis, characterization and cytotoxicity studies of palladium (II)-proflavine complexes. Journal of Inorganic Biochemistry, 104(1), 205-1213. https://doi.org/10.1016/j.jinorgbio.2010.07.010
Prasher, P., & Sharma, M. (2018). Medicinal chemistry of acridine and its analogues. MedChemComm, 10, 1589-1618. https://doi.org/10.1039/c8md00384j
Pridgeon, J. W., Klesius, P. H., & Yildirim-Aksoy, M. (2013). Attempt to develop live attenuated bacterial vaccines by selecting resistance to gossypol, proflavine hemisulfate, novobiocin, or ciprofloxacin. Vaccine, 26(18), 2222-2230. https://doi.org/10.1016/j.vaccine.2013.03.004
Qu, X., & Chaires, J. B. (2000). Analysis of drug-DNA binding data. Methods in Enzymology, 321, 353-369. https://doi.org/10.1016/S0076-6879(00)21202-0
Rescifina, A., Zagni, C., Varrica, M. G., Pistarà, V., & Corsaro, A. (2014). Recent advances in small organic molecules as DNA intercalating agents: Synthesis, activity, and modelling. European Journal of Medicinal Chemistry, 74, 95-115. https://doi.org/10.1016/j.ejmech.2013.11.029
Rupar, J. S., Dobričić, V. D., Aleksić, M. M., Brborić, J. S., & Čudina, O. A. (2018). A review of published data on acridine derivatives with different biological activities. Kragujevac Journal of Science, 40, 83-101.
Salem, O., & Kozurkova, M. (2018). Sulfur containing acridine derivatives in preclinical studies with cancer cell lines. Current Medicinal Chemistry, 25(17), 1968-1975. https://doi.org/10.2174/0929867324666170414165019
Shiau, C.-W., Yang, C.-C., Kulp, S. K., Chen, K.-F., Chen, C.-S., Huang, J.-W., & Chen, C.-S. (2005). Thiazolidenediones mediate apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 functions independently of PPAR gamma. Cancer Research, 65, 1561-1569. https://doi.org/10.1158/0008-5472.CAN-04-1677
Tonelli, M., Vettoretti, G., Tasso, B., Novelli, F., Boido, V., Sparatore, F., … La Colla, P. (2011). Acridine derivatives as anti-BVDV agents. Antiviral Research, 91, 133-141. https://doi.org/10.1016/j.antiviral.2011.05.005
Tsankov, N. K., Kazandjieva, J., & Drenovska, K. (1998). Drug in exacerbation and provocation of psoriasis. Clinical Dermatology, 16, 333-351. https://doi.org/10.1016/S0738-081X(98)00005-4
Vantova, Z., Paulikova, H., Sabolova, D., Kozurkova, M., Suchanova, M., Janovec, L., … Imrich, J. (2009). Cytotoxic activity of acridin-3,6-diyl dithiourea hydrochlorides in human leukemia line HL-60 and resistant subline HL-60/ADR. International Journal of Biological Macromolecules, 45, 174-180. https://doi.org/10.1016/j.ijbiomac.2009.04.018
Vellonen, K. S., Honkakoski, P., & Urtti, A. (2004). Substrates and inhibitors of efflux proteins interfere with the MTT assay in cells and may lead to underestimation of drug toxicity. European Journal of Pharmaceutical Sciences, 23, 181-188. https://doi.org/10.1016/j.ejps.2004.07.006
Wainwright, M. (2001). Acridine-a neglected antibacterial chromophore. Journal of Antimicrobial Chemotherapy, 47(1), 1-13. https://doi.org/10.1093/jac/47.1.1
Weinstein, B., & Finkelstein, I. H. (1967). Proflavine inhibition of protein synthesis. Journal of Biological Chemistry, 242, 3757-3762.
Zagar, P., Ghani, E., Mashayekhi, F. J., Ramezan, A., & Eftekhar, E. (2018). Acriflavine enhances the antitumor activity of the chemotherapeutic drug 5-fluorouracil in colorectal cancer cells. Oncology Letters, 15, 10084-10090. https://doi.org/10.3892/ol.2018.8569