Understanding fungal potential in the mitigation of contaminated areas in the Czech Republic: tolerance, biotransformation of hexachlorocyclohexane (HCH) and oxidative stress analysis

. 2019 Aug ; 26 (24) : 24445-24461. [epub] 20190622

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31228071
Odkazy

PubMed 31228071
DOI 10.1007/s11356-019-05679-w
PII: 10.1007/s11356-019-05679-w
Knihovny.cz E-zdroje

The study of the soil microbial community represents an important step in better understanding the environmental context. Therefore, biological characterisation and physicochemical integration are keys when defining contaminated sites. Fungi play a fundamental role in the soil, by providing and supporting ecological services for ecosystems and human wellbeing. In this research, 52 soil fungal taxa were isolated from in situ pilot reactors installed to a contaminated site in Czech Republic with a high concentration of hexachlorocyclohexane (HCH). Among the identified isolates, 12 strains were selected to evaluate their tolerance to different isomers of HCH by using specific indices (Rt:Rc; T.I.) and to test their potential in xenobiotic biotransformation. Most of the selected taxa was not significantly affected by exposure to HCH, underlining the elevated tolerance of all the tested fungal taxa, and different metabolic intermediates of HCH dechlorination were observed. The oxidative stress responses to HCH for two selected species, Penicillium simplicissimum and Trichoderma harzianum, were investigated in order to explore their toxic responses and to evaluate their potential functioning in bioremediation of contaminated environments. This research suggests that the isolated fungal species may provide opportunities for new eco-friendly, integrated and cost-effective solutions for environmental management and remediation, considering their efficient adaptation to stressful conditions.

Zobrazit více v PubMed

J Bacteriol. 2001 Feb;183(4):1434-40 PubMed

Environ Sci Pollut Res Int. 2016 Jan;23(1):765-73 PubMed

New Phytol. 2005 Jun;166(3):1063-8 PubMed

Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 PubMed

Crit Rev Microbiol. 2015;41(3):295-308 PubMed

Remediation (N Y). 2016 Spring;26(2):59-72 PubMed

J Environ Manage. 2012 Mar;95 Suppl:S291-9 PubMed

Antioxid Redox Signal. 2013 Sep 20;19(9):1012-25 PubMed

Nat Rev Microbiol. 2011 Mar;9(3):177-92 PubMed

World J Microbiol Biotechnol. 2014 Apr;30(4):1301-13 PubMed

Chemosphere. 2014 Dec;117:47-52 PubMed

Chemosphere. 2015 Oct;137:101-7 PubMed

Bull Environ Contam Toxicol. 1994 Jul;53(1):12-7 PubMed

Mar Pollut Bull. 2005;51(8-12):1071-7 PubMed

Comp Biochem Physiol C Toxicol Pharmacol. 2011 Mar;153(2):175-90 PubMed

World J Microbiol Biotechnol. 2013 Mar;29(3):475-87 PubMed

Environ Sci Pollut Res Int. 2004;11(1):1-2 PubMed

Environ Microbiol. 2015 Jun;17(6):2018-34 PubMed

J Environ Manage. 2018 Jan 15;206:1081-1089 PubMed

Chemosphere. 2011 Jul;84(4):397-402 PubMed

Environ Sci Pollut Res Int. 2016 Sep;23(17):16904-25 PubMed

Mycologia. 2005 Sep-Oct;97(5):984-95 PubMed

Anal Biochem. 1976 May 7;72:248-54 PubMed

Int J Nanomedicine. 2017 Apr 04;12:2717-2731 PubMed

Fungal Genet Biol. 2005 Oct;42(10):813-28 PubMed

Appl Environ Microbiol. 2006 Jan;72(1):28-36 PubMed

Appl Microbiol Biotechnol. 2007 Sep;76(4):741-52 PubMed

Indian J Microbiol. 2016 Sep;56(3):247-64 PubMed

Bull Environ Contam Toxicol. 2018 Apr;100(4):570-575 PubMed

Bioresour Technol. 2015 Dec;197:404-9 PubMed

Environ Pollut. 2001;113(2):187-98 PubMed

Environ Sci Pollut Res Int. 2017 Mar;24(9):8880-8888 PubMed

Int J Environ Res Public Health. 2009 Apr;6(4):1393-417 PubMed

Water Res. 2001 Dec;35(17):4126-36 PubMed

J Environ Manage. 2012 Mar;95 Suppl:S306-18 PubMed

Sci Total Environ. 2017 May 15;586:576-597 PubMed

Appl Environ Microbiol. 2011 Sep;77(17):6076-84 PubMed

Fungal Genet Biol. 2011 Jan;48(1):35-48 PubMed

Bioresour Technol. 2003 May;88(1):41-6 PubMed

Crit Rev Microbiol. 2000;26(4):221-64 PubMed

Appl Environ Microbiol. 1976 Jun;31(6):853-8 PubMed

Water Res. 2017 Oct 1;122:591-602 PubMed

J Agric Food Chem. 2003 Dec 31;51(27):8015-9 PubMed

Environ Sci Pollut Res Int. 2011 Feb;18(2):152-62 PubMed

Crit Rev Biotechnol. 2003;23(4):267-302 PubMed

Biodegradation. 1996 Apr;7(2):165-71 PubMed

N Biotechnol. 2015 Dec 25;32(6):620-8 PubMed

Appl Microbiol Biotechnol. 2018 Jan;102(2):1019-1033 PubMed

Mycologia. 2005 Nov-Dec;97(6):1365-78 PubMed

Bull Environ Contam Toxicol. 2006 Dec;77(6):882-7 PubMed

Ecotoxicol Environ Saf. 2018 Feb;148:754-762 PubMed

Environ Res. 2015 Nov;143(Pt A):177-85 PubMed

Int J Nanomedicine. 2016 Aug 26;11:4199-211 PubMed

Toxicology. 2013 May 10;307:74-88 PubMed

Appl Environ Microbiol. 1995 Apr;61(4):1323-30 PubMed

Free Radic Biol Med. 1997;23(5):809-14 PubMed

Arch Environ Contam Toxicol. 2010 Jul;59(1):71-9 PubMed

Environ Sci Pollut Res Int. 2017 Feb;24(5):4223-4227 PubMed

Antonie Van Leeuwenhoek. 2010 May;97(4):377-87 PubMed

New Phytol. 2010 Apr;186(2):281-5 PubMed

Environ Sci Pollut Res Int. 2016 Oct;23(20):20985-20996 PubMed

AMB Express. 2014 Apr 01;4:29 PubMed

PLoS One. 2017 Aug 31;12(8):e0183373 PubMed

Nucleic Acids Res. 2012 Jan;40(Database issue):D33-7 PubMed

Free Radic Biol Med. 2008 Feb 1;44(3):394-402 PubMed

Biodegradation. 2005 Aug;16(4):363-92 PubMed

Chemosphere. 2018 Jan;190:174-183 PubMed

Lett Appl Microbiol. 1999 Mar;28(3):238-41 PubMed

Mycol Res. 2005 Feb;109(Pt 2):150-8 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...