Sex specific associations in genome wide association analysis of renal cell carcinoma
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, metaanalýza, multicentrická studie, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
10124
Cancer Research UK - United Kingdom
U01 CA155309
NCI NIH HHS - United States
24390
Cancer Research UK - United Kingdom
16561
Cancer Research UK - United Kingdom
R01 CA170298
NCI NIH HHS - United States
001
World Health Organization - International
PubMed
31231134
PubMed Central
PMC6777615
DOI
10.1038/s41431-019-0455-9
PII: 10.1038/s41431-019-0455-9
Knihovny.cz E-zdroje
- MeSH
- celogenomová asociační studie * MeSH
- genetická predispozice k nemoci * MeSH
- jednonukleotidový polymorfismus MeSH
- karcinom z renálních buněk epidemiologie genetika MeSH
- lidé MeSH
- lokus kvantitativního znaku MeSH
- nádory ledvin epidemiologie genetika MeSH
- odds ratio MeSH
- sexuální faktory MeSH
- výpočetní biologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Renal cell carcinoma (RCC) has an undisputed genetic component and a stable 2:1 male to female sex ratio in its incidence across populations, suggesting possible sexual dimorphism in its genetic susceptibility. We conducted the first sex-specific genome-wide association analysis of RCC for men (3227 cases, 4916 controls) and women (1992 cases, 3095 controls) of European ancestry from two RCC genome-wide scans and replicated the top findings using an additional series of men (2261 cases, 5852 controls) and women (1399 cases, 1575 controls) from two independent cohorts of European origin. Our study confirmed sex-specific associations for two known RCC risk loci at 14q24.2 (DPF3) and 2p21(EPAS1). We also identified two additional suggestive male-specific loci at 6q24.3 (SAMD5, male odds ratio (ORmale) = 0.83 [95% CI = 0.78-0.89], Pmale = 1.71 × 10-8 compared with female odds ratio (ORfemale) = 0.98 [95% CI = 0.90-1.07], Pfemale = 0.68) and 12q23.3 (intergenic, ORmale = 0.75 [95% CI = 0.68-0.83], Pmale = 1.59 × 10-8 compared with ORfemale = 0.93 [95% CI = 0.82-1.06], Pfemale = 0.21) that attained genome-wide significance in the joint meta-analysis. Herein, we provide evidence of sex-specific associations in RCC genetic susceptibility and advocate the necessity of larger genetic and genomic studies to unravel the endogenous causes of sex bias in sexually dimorphic traits and diseases like RCC.
Brigham and Women's Hospital and VA Boston Boston MA USA
Brown University Providence RI USA
Cancer Prevention Program Fred Hutchinson Cancer Research Center Seattle WA USA
Carol Davila University of Medicine and Pharmacy Th Burghele Hospital Bucharest Romania
Center 'Bioengineering' of the Russian Academy of Sciences Moscow Russian Federation
CNRS UMR8200 Institute Gustave Roussy Villejuif France
College of Human Medicine Michigan State University Grand Rapids MI USA
Dana Farber Cancer Institute Bostan MA USA
Department of Cancer Epidemiology and Genetics Masaryk Memorial Cancer Institute Brno Czech Republic
Department of Computational Biology St Jude Children's Research Hospital Memphis TN USA
Department of Epidemiology Nofer Institute of Occupational Medicine Lodz Poland
Department of Oncology University of Cambridge Cambridge UK
Department of Preventive Medicine Faculty of Medicine Palacky University Olomouc Czech Republic
Department of Public Health and Primary Care University of Cambridge Cambridge UK
Department of Public Health Section for Epidemiology Aarhus University Aarhus C Denmark
Department of Surgical and Perioperative Sciences Urology and Andrology Umeå University Umeå Sweden
Department of Urology University Hospital Dr D Misovic Clinical Center Belgrade Serbia
Dipartimento di Medicina Clinica e Chirurgia Federico 2 University Naples Italy
Division of Urology Spectrum Health Grand Rapids MI USA
Faculty of Health Sciences Palacky University Olomouc Czech Republic
Faculty of Medicine School of Public Health Imperial College London London UK
Fondation Jean Dausset Centre d'Etude du Polymorphisme Humain Paris France
Fred Hutchinson Cancer Research Center Seattle WA USA
Harvard T H Chan School of Public Health Boston MA USA
Hellenic Health Foundation Alexandroupoleos 23 Athens 11527 Greece
Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
Institute of Pathology Medical school of Belgrade Belgrade Serbia
International Agency for Research on Cancer Lyon France
Kurchatov Scientific Center Moscow Russian Federation
London School of Hygiene and Tropical Medicine University of London London UK
Max Planck Institute for Demographic Research Rostock Germany
McGill University and Genome Quebec Innovation Centre Montreal Quebec Canada
National Institute for Health and Welfare Helsinki Finland
National Institute of Public Health Bucharest Romania
National Public Health Institute Budapest Hungary
Regional Authority of Public Health in BanskaBystrica BanskaBystrica Slovakia
Russian N N Blokhin Cancer Research Centre Moscow Russian Federation
Sorbonne Université GRC no 5 ONCOTYPE URO AP HP Tenon Hospital Paris France
The M Sklodowska Curie Cancer Center and Institute of Oncology Warsaw Poland
Van Andel Research Institute Center for Cancer Genomics and Quantitative Biology Grand Rapids MI USA
Zobrazit více v PubMed
Znaor A, Lortet-Tieulent J, Laversanne M, Jemal A, Bray F. International variations and trends in renal cell carcinoma incidence and mortality. Eur Urol. 2015;67:519–30. doi: 10.1016/j.eururo.2014.10.002. PubMed DOI
Lopez-Beltran A, Scarpelli M, Montironi R, Kirkali Z. 2004 WHO classification of the renal tumors of the adults. Eur Urol. 2006;49:798–805. doi: 10.1016/j.eururo.2005.11.035. PubMed DOI
Scelo Ghislaine, Li Peng, Chanudet Estelle, Muller David C. Variability of Sex Disparities in Cancer Incidence over 30 Years: The Striking Case of Kidney Cancer. European Urology Focus. 2018;4(4):586–590. doi: 10.1016/j.euf.2017.01.006. PubMed DOI
Bray FCM, Mery L, Piñeros M, Znaor A, Zanetti R and Ferlay J, editors. Cancer Incidence in Five Continents, 2017, Vol. XI (electronic version).
Clocchiatti A, Cora E, Zhang Y, Dotto GP. Sexual dimorphism in cancer. Nat Rev Cancer. 2016;16:330–9. doi: 10.1038/nrc.2016.30. PubMed DOI
Yuan Y, Liu L, Chen H, Wang Y, Xu Y, Mao H, et al. Comprehensive characterization of molecular differences in cancer between male and female patients. Cancer Cell. 2016;29:711–22. doi: 10.1016/j.ccell.2016.04.001. PubMed DOI PMC
Haas NB, Nathanson KL. Hereditary kidney cancer syndromes. Adv Chronic Kidney Dis. 2014;21:81–90. doi: 10.1053/j.ackd.2013.10.001. PubMed DOI PMC
Purdue MP, Johansson M, Zelenika D, Toro JR, Scelo G, Moore LE, et al. Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nat Genet. 2011;43:60–65. doi: 10.1038/ng.723. PubMed DOI PMC
Wu X, Scelo G, Purdue MP, Rothman N, Johansson M, Ye Y, et al. A genome-wide association study identifies a novel susceptibility locus for renal cell carcinoma on 12p11.23. Hum Mol Genet. 2012;21:456–62. doi: 10.1093/hmg/ddr479. PubMed DOI PMC
Henrion M, Frampton M, Scelo G, Purdue M, Ye Y, Broderick P, et al. Common variation at 2q22.3 (ZEB2) influences the risk of renal cancer. Hum Mol Genet. 2013;22:825–31. doi: 10.1093/hmg/dds489. PubMed DOI PMC
Henrion MY, Purdue MP, Scelo G, Broderick P, Frampton M, Ritchie A, et al. Common variation at 1q24.1 (ALDH9A1) is a potential risk factor for renal cancer. PLoS ONE. 2015;10:e0122589. doi: 10.1371/journal.pone.0122589. PubMed DOI PMC
Scelo G, Purdue MP, Brown KM, Johansson M, Wang Z, Eckel-Passow JE, et al. Genome-wide association study identifies multiple risk loci for renal cell carcinoma. Nat Commun. 2017;8:15724. doi: 10.1038/ncomms15724. PubMed DOI PMC
Gudmundsson J, Sulem P, Gudbjartsson DF, Masson G, Petursdottir V, Hardarson S, et al. A common variant at 8q24.21 is associated with renal cell cancer. Nat Commun. 2013;4:2776. doi: 10.1038/ncomms3776. PubMed DOI
Winkler TW, Justice AE, Graff M, Barata L, Feitosa MF, Chu S, et al. Correction: The influence of age and sex on genetic associations with adult body size and shape: a large-scale genome-wide interaction study. PLoS Genet. 2016;12:e1006166. doi: 10.1371/journal.pgen.1006166. PubMed DOI PMC
Zhuang JJ, Morris AP. Assessment of sex-specific effects in a genome-wide association study of rheumatoid arthritis. BMC Proc. 2009;3(Suppl 7):S90. doi: 10.1186/1753-6561-3-S7-S90. PubMed DOI PMC
Randall JC, Winkler TW, Kutalik Z, Berndt SI, Jackson AU, Monda KL, et al. Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits. PLoS Genet. 2013;9:e1003500. doi: 10.1371/journal.pgen.1003500. PubMed DOI PMC
Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9. doi: 10.1038/ng1847. PubMed DOI
Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics. 2010;26:2336–7. doi: 10.1093/bioinformatics/btq419. PubMed DOI PMC
Magi R, Morris AP. GWAMA: software for genome-wide association meta-analysis. BMC Bioinf. 2010;11:288. doi: 10.1186/1471-2105-11-288. PubMed DOI PMC
Hormozdiari F, van de Bunt M, Segre AV, Li X, Joo JWJ, Bilow M, et al. Colocalization of GWAS and eQTL signals detects target genes. Am J Hum Genet. 2016;99:1245–60. doi: 10.1016/j.ajhg.2016.10.003. PubMed DOI PMC
Hoyal CR, Kammerer S, Roth RB, Reneland R, Marnellos G, Kiechle M, et al. Genetic polymorphisms in DPF3 associated with risk of breast cancer and lymph node metastases. J Carcinog. 2005;4:13. doi: 10.1186/1477-3163-4-13. PubMed DOI PMC
Ricketts CJ, Linehan WM. Gender specific mutation incidence and survival associations in clear cell renal cell carcinoma (CCRCC) PLoS ONE. 2015;10:e0140257. doi: 10.1371/journal.pone.0140257. PubMed DOI PMC
Cancer Genome Atlas Research N. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43–49. doi: 10.1038/nature12222. PubMed DOI PMC
Kapur P, Pena-Llopis S, Christie A, Zhrebker L, Pavía-Jiménez A, Rathmell WK, et al. Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation. Lancet Oncol. 2013;14:159–67. doi: 10.1016/S1470-2045(12)70584-3. PubMed DOI PMC
Kwekel JC, Desai VG, Moland CL, Vijay V, Fuscoe JC. Sex differences in kidney gene expression during the life cycle of F344 rats. Biol Sex Differ. 2013;4:14. doi: 10.1186/2042-6410-4-14. PubMed DOI PMC
Brannon AR, Haake SM, Hacker KE, Pruthi RS, Wallen EM, Nielsen ME, et al. Meta-analysis of clear cell renal cell carcinoma gene expression defines a variant subgroup and identifies gender influences on tumor biology. Eur Urol. 2012;61:258–68. doi: 10.1016/j.eururo.2011.10.007. PubMed DOI PMC
Huby RD, Glaves P, Jackson R. The incidence of sexually dimorphic gene expression varies greatly between tissues in the rat. PLoS ONE. 2014;9:e115792. doi: 10.1371/journal.pone.0115792. PubMed DOI PMC
Putra AC, Eguchi H, Lee KL, Yamane Y, Gustine E, Isobe T, et al. The A Allele at rs13419896 of EPAS1 is associated with enhanced expression and poor prognosis for non-small cell lung cancer. PLoS ONE. 2015;10:e0134496. doi: 10.1371/journal.pone.0134496. PubMed DOI PMC
Iwamoto S, Tanimoto K, Nishio Y, Putra AC, Fuchita H, Ohe M, et al. Association of EPAS1 gene rs4953354 polymorphism with susceptibility to lung adenocarcinoma in female Japanese non-smokers. J Thorac Oncol. 2014;9:1709–13. doi: 10.1097/JTO.0000000000000309. PubMed DOI
Riazalhosseini Y, Lathrop M. Precision medicine from the renal cancer genome. Nat Rev Nephrol. 2016;12:655–66. doi: 10.1038/nrneph.2016.133. PubMed DOI
Gossage L, Eisen T, Maher ER. VHL, the story of a tumour suppressor gene. Nat Rev Cancer. 2015;15:55–64. doi: 10.1038/nrc3844. PubMed DOI
Fuady JH, Gutsche K, Santambrogio S, Varga Z, Hoogewijs D, Wenger RH. Correction: Estrogen-dependent downregulation of hypoxia-inducible factor (HIF)-2alpha in invasive breast cancer cells. Oncotarget. 2017;8:20516. doi: 10.18632/oncotarget.16388. PubMed DOI PMC
Grampp S, Platt JL, Lauer V, Salama R, Kranz F, Neumann VK, et al. Genetic variation at the 8q24.21 renal cancer susceptibility locus affects HIF binding to a MYC enhancer. Nat Commun. 2016;7:13183. doi: 10.1038/ncomms13183. PubMed DOI PMC
Schodel J, Bardella C, Sciesielski LK, Brown JM, Pugh CW, Buckle V, et al. Common genetic variants at the 11q13.3 renal cancer susceptibility locus influence binding of HIF to an enhancer of cyclin D1 expression. Nat Genet. 2012;44:420–5. doi: 10.1038/ng.2204. PubMed DOI PMC
Yagai T, Matsui S, Harada K, Inagaki FF, Saijou E, Miura Y, et al. Expression and localization of sterile alpha motif domain containing 5 is associated with cell type and malignancy of biliary tree. PLoS ONE. 2017;12:e0175355. doi: 10.1371/journal.pone.0175355. PubMed DOI PMC
Hwang SJ, Yang Q, Meigs JB, Pearce EN, Fox CS. A genome-wide association for kidney function and endocrine-related traits in the NHLBI’s Framingham Heart Study. BMC Med Genet. 2007;8(Suppl 1):S10. doi: 10.1186/1471-2350-8-S1-S10. PubMed DOI PMC
Iyengar SK, Sedor JR, Freedman BI, Kao WH, Kretzler M, Keller BJ, et al. Genome-wide association and trans-ethnic meta-analysis for advanced diabetic kidney disease: family investigation of nephropathy and diabetes (FIND) PLoS Genet. 2015;11:e1005352. doi: 10.1371/journal.pgen.1005352. PubMed DOI PMC
Differences in risk factors for molecular subtypes of clear cell renal cell carcinoma