Sexual dimorphism in cancer: insights from transcriptional signatures in kidney tissue and renal cell carcinoma
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
001
World Health Organization - International
24390
Cancer Research UK - United Kingdom
U01 CA155309
NCI NIH HHS - United States
PubMed
33527138
PubMed Central
PMC8098110
DOI
10.1093/hmg/ddab031
PII: 6126014
Knihovny.cz E-zdroje
- MeSH
- celogenomová asociační studie MeSH
- genetická predispozice k nemoci * MeSH
- genetické asociační studie MeSH
- geny vázané na chromozom X MeSH
- karcinom z renálních buněk genetika metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádorové biomarkery metabolismus MeSH
- nádory ledvin genetika metabolismus MeSH
- pohlavní dimorfismus * MeSH
- prognóza MeSH
- progrese nemoci MeSH
- regulace genové exprese u nádorů * MeSH
- senioři MeSH
- stanovení celkové genové exprese * MeSH
- tumor supresorové geny MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- nádorové biomarkery MeSH
Sexual dimorphism in cancer incidence and outcome is widespread. Understanding the underlying mechanisms is fundamental to improve cancer prevention and clinical management. Sex disparities are particularly striking in kidney cancer: across diverse populations, men consistently show unexplained 2-fold increased incidence and worse prognosis. We have characterized genome-wide expression and regulatory networks of 609 renal tumors and 256 non-tumor renal tissues. Normal kidney displayed sex-specific transcriptional signatures, including higher expression of X-linked tumor suppressor genes in women. Sex-dependent genotype-phenotype associations unraveled women-specific immune regulation. Sex differences were markedly expanded in tumors, with male-biased expression of key genes implicated in metabolism, non-malignant diseases with male predominance and carcinogenesis, including markers of tumor infiltrating leukocytes. Analysis of sex-dependent RCC progression and survival uncovered prognostic markers involved in immune response and oxygen homeostasis. In summary, human kidney tissues display remarkable sexual dimorphism at the molecular level. Sex-specific transcriptional signatures further shape renal cancer, with relevance for clinical management.
Department of Environmental Epidemiology Nofer Institute of Occupational Medicine 91 348 Lodz Poland
Department of Environmental Health National Institute of Public Health 050463 Bucharest Romania
Faculty of Medicine School of Public Health Imperial College London W21NY London UK
International Organisation for Cancer Prevention and Research 11070 Belgrade Serbia
Laboratory of Population Health Max Planck Institute for Demographic Research 18057 Rostock Germany
Section of Genetics International Agency for Research on Cancer 69372 Lyon France
Unit of Cancer Epidemiology Department of Medical Sciences University of Turin 8 10124 Turin Italy
Université Paris Saclay CEA Centre National de Recherche en Génomique Humaine 91057 Evry France
Zobrazit více v PubMed
Khramtsova, E.A., Davis, L.K. and Stranger, B.E. (2019) The role of sex in the genomics of human complex traits. Nat. Rev. Genet., 20, 173–190. PubMed
Siegel, R.L., Miller, K.D. and Jemal, A. (2020) Cancer statistics, 2020. CA Cancer J. Clin., 70, 7–30. PubMed
Scelo, G., Li, P., Chanudet, E. and Muller, D.C. (2018) Variability of sex disparities in cancer incidence over 30 years: the striking case of kidney cancer. Eur. Urol. Focus, 4, 586–590. PubMed
Lucca, I., Klatte, T., Fajkovic, H., deMartino, M. and Shariat, S.F. (2015) Gender differences in incidence and outcomes of urothelial and kidney cancer. Nat. Rev. Urol., 12, 653. PubMed
GTEx Consortium (2017) Genetic effects on gene expression across human tissues. Nature, 550, 204–213. PubMed PMC
Gershoni, M. and Pietrokovski, S. (2017) The landscape of sex-differential transcriptome and its consequent selection in human adults. BMC Biol., 15, 7. PubMed PMC
Li, C.H., Haider, S., Shiah, Y.J., Thai, K. and Boutros, P.C. (2018) Sex differences in cancer driver genes and biomarkers. Cancer Res., 78, 5527–5537. PubMed
Yuan, Y., Liu, L., Chen, H., Wang, Y., Xu, Y., Mao, H., Li, J., Mills, G.B., Shu, Y., Li, L.et al. (2016) Comprehensive characterization of molecular differences in cancer between male and female patients. Cancer Cell, 29, 711–722. PubMed PMC
Dunford, A., Schumacher, S.E., Savova, V., Gimelbrant, A.A., Beroukhim, R., Lawrence, M.S., Getz, G., Weinstock, D.M. and Lane, A.A. (2015) Escape from X-inactivation tumor suppressor (EXITS) genes are associated with excess incidence of cancer in men. Blood, 126, 3665.
Dunford, A., Weinstock, D.M., Savova, V., Schumacher, S.E., Cleary, J.P., Yoda, A., Sullivan, T.J., Hess, J.M., Gimelbrant, A.A., Beroukhim, R.et al. (2017) Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias. Nat. Genet., 49, 10–16. PubMed PMC
Brannon, A.R., Haake, S.M., Hacker, K.E., Pruthi, R.S., Wallen, E.M., Nielsen, M.E. and Rathmell, W.K. (2012) Meta-analysis of clear cell renal cell carcinoma gene expression defines a variant subgroup and identifies gender influences on tumor biology. Eur. Urol., 61, 258–268. PubMed PMC
Scelo, G., Purdue, M.P., Brown, K.M., Johansson, M., Wang, Z., Eckel-Passow, J.E., Ye, Y., Hofmann, J.N., Choi, J., Foll, M.et al. (2017) Genome-wide association study identifies multiple risk loci for renal cell carcinoma. Nat. Commun., 8, 15724. PubMed PMC
Laskar, R.S., Muller, D.C., Li, P., Machiela, M.J., Ye, Y., Gaborieau, V., Foll, M., Hofmann, J.N., Colli, L., Sampson, J.N.et al. (2019) Sex specific associations in genome wide association analysis of renal cell carcinoma. Eur. J. Hum. Genet., 27, 1589–1598. PubMed PMC
. Dimas, A.S., Nica, A.C., Montgomery, S.B., Stranger, B.E., Raj, T., Buil, A., Giger, T., Lappalainen, T., Gutierrez-Arcelus, M., McCarthy, M.I.. et al. (2012) Sex-biased genetic effects on gene regulation in humans. Genome Res., 22, 2368–2375. PubMed PMC
Yao, C., Joehanes, R., Johnson, A.D., Huan, T., Esko, T., Ying, S., Freedman, J.E., Murabito, J., Lunetta, K.L., Metspalu, A.et al. (2014) Sex- and age-interacting eQTLs in human complex diseases. Hum. Mol. Genet., 23, 1947–1956. PubMed PMC
Acosta, M.J., Vazquez Fonseca, L., Desbats, M.A., Cerqua, C., Zordan, R., Trevisson, E. and Salviati, L. (2016) Coenzyme Q biosynthesis in health and disease. Biochim. Biophys. Acta, 1857, 1079–1085. PubMed
Danaher, P., Warren, S., Dennis, L., D'Amico, L., White, A., Disis, M.L., Geller, M.A., Odunsi, K., Beechem, J. and Fling, S.P. (2017) Gene expression markers of tumor infiltrating leukocytes. J. Immunother. Cancer, 5, 18. PubMed PMC
Li, X., Zhang, Y., Zheng, L., Liu, M., Chen, C.D. and Jiang, H. (2018) UTX is an escape from X-inactivation tumor-suppressor in B cell lymphoma. Nat. Commun., 9, 2720. PubMed PMC
Mozhui, K., Lu, L., Armstrong, W.E. and Williams, R.W. (2012) Sex-specific modulation of gene expression networks in murine hypothalamus. Front. Neurosci., 6, 63. PubMed PMC
Kellaris, G., Khan, K., Baig, S.M., Tsai, I.C., Zamora, F.M., Ruggieri, P., Natowicz, M.R. and Katsanis, N. (2018) A hypomorphic inherited pathogenic variant in DDX3X causes male intellectual disability with additional neurodevelopmental and neurodegenerative features. Hum. Genomics, 12, 11. PubMed PMC
Jamain, S., Quach, H., Betancur, C., Rastam, M., Colineaux, C., Gillberg, I.C., Soderstrom, H., Giros, B., Leboyer, M., Gillberg, C.et al. (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat. Genet., 34, 27–29. PubMed PMC
Schizophrenia Working Group of the Psychiatric Genomics, C (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511, 421–427. PubMed PMC
Gee, H.Y., Zhang, F., Ashraf, S., Kohl, S., Sadowski, C.E., Vega-Warner, V., Zhou, W., Lovric, S., Fang, H., Nettleton, M.et al. (2015) KANK deficiency leads to podocyte dysfunction and nephrotic syndrome. J. Clin. Invest., 125, 2375–2384. PubMed PMC
Lu, N., Yang, Y., Wang, Y., Liu, Y., Fu, G., Chen, D., Dai, H., Fan, X., Hui, R. and Zheng, Y. (2012) ACE2 gene polymorphism and essential hypertension: an updated meta-analysis involving 11,051 subjects. Mol. Biol. Rep., 39, 6581–6589. PubMed
Doring, A., Gieger, C., Mehta, D., Gohlke, H., Prokisch, H., Coassin, S., Fischer, G., Henke, K., Klopp, N., Kronenberg, F.et al. (2008) SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat. Genet., 40, 430–436. PubMed
Lowrance, W.T., Ordonez, J., Udaltsova, N., Russo, P. and Go, A.S. (2014) CKD and the risk of incident cancer. J. Am. Soc. Nephrol., 25, 2327–2334. PubMed PMC
Wang, W., Xu, D., Wang, B., Yan, S., Wang, X., Yin, Y., Wang, X., Sun, B. and Sun, X. (2015) Increased risk of cancer in relation to gout: a review of three prospective cohort studies with 50,358 subjects. Mediat. Inflamm., 2015, 680853. PubMed PMC
The Cancer Genome Atlas Research Network (2013) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature, 499, 43–49. PubMed PMC
Ippolito, J.E., Yim, A.K., Luo, J., Chinnaiyan, P. and Rubin, J.B. (2017) Sexual dimorphism in glioma glycolysis underlies sex differences in survival. J.C.I. Insight, 2, e92142. PubMed PMC
Pantel, A.R., Ackerman, D., Lee, S.C., Mankoff, D.A. and Gade, T.P. (2018) Imaging cancer metabolism: underlying biology and emerging strategies. J. Nucl. Med., 59, 1340–1349. PubMed PMC
Klein, S.L. and Flanagan, K.L. (2016) Sex differences in immune responses. Nat. Rev. Immunol., 16, 626–638. PubMed
Colotta, F., Allavena, P., Sica, A., Garlanda, C. and Mantovani, A. (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis, 30, 1073–1081. PubMed
Motzer, R.J., Escudier, B., McDermott, D.F., George, S., Hammers, H.J., Srinivas, S., Tykodi, S.S., Sosman, J.A., Procopio, G., Plimack, E.R.et al. (2015) Nivolumab versus Everolimus in advanced renal-cell carcinoma. N. Engl. J. Med., 373, 1803–1813. PubMed PMC
Conforti, F., Pala, L., Bagnardi, V., Viale, G., De Pas, T., Pagan, E., Gelber, R.D. and Goldhirsch, A. (2019) Sex-based differences of the tumor mutational burden and T-cell inflammation of the tumor microenvironment. Ann. Oncol., 30, 653–655. PubMed
Conforti, F., Pala, L., Bagnardi, V., De Pas, T., Martinetti, M., Viale, G., Gelber, R.D. and Goldhirsch, A. (2018) Cancer immunotherapy efficacy and patients' sex: a systematic review and meta-analysis. Lancet Oncol., 19, 737–746. PubMed
Zimpfer, A., Dammert, F., Glass, A., Zettl, H., Kilic, E., Maruschke, M., Hakenberg, O.W. and Erbersdobler, A. (2016) Expression and clinicopathological correlations of retinoid acid receptor responder protein 1 in renal cell carcinomas. Biomark. Med, 10, 721–732. PubMed
Wang, D., He, M.Q. and Fan, D.Q. (2019) RARRES1 is a novel immune-related biomarker in GBM. Am. J. Trans. l Res., 11, 5655–5663. PubMed PMC
Liu, Q., Zhang, X., Tang, H., Liu, J., Fu, C., Sun, M., Zhao, L., Wei, M., Yu, Z. and Wang, P. (2020) Bioinformatics analysis suggests the combined expression of AURKB and KIF18B being an important event in the development of clear cell renal cell carcinoma. Pathol. Oncol. Res., 26, 1583–1594. PubMed
Cui, X.F., Cui, X.G. and Leng, N. (2019) Overexpression of interleukin-20 receptor subunit beta (IL20RB) correlates with cell proliferation, invasion and migration enhancement and poor prognosis in papillary renal cell carcinoma. J. Toxicol. Pathol., 32, 245–251. PubMed PMC
Liu, J., Liu, Z., Liu, Q., Li, L., Fan, X., Wen, T. and An, G. (2018) CLEC3B is downregulated and inhibits proliferation in clear cell renal cell carcinoma. Oncol. Rep., 40, 2023–2035. PubMed PMC
Sun, J., Xie, T., Jamal, M., Tu, Z., Li, X., Wu, Y., Li, J., Zhang, Q. and Huang, X. (2020) CLEC3B as a potential diagnostic and prognostic biomarker in lung cancer and association with the immune microenvironment. Cancer Cell Int., 20, 106. PubMed PMC
Wuttig, D., Zastrow, S., Füssel, S., Toma, M.I., Meinhardt, M., Kalman, K., Junker, K., Sanjmyatav, J., Boll, K., Hackermüller, J.et al. (2012) CD31, EDNRB and TSPAN7 are promising prognostic markers in clear-cell renal cell carcinoma revealed by genome-wide expression analyses of primary tumors and metastases. Int. J.cancer, 131, E693–E704. PubMed
Gulati, S., Martinez, P., Joshi, T., Birkbak, N.J., Santos, C.R., Rowan, A.J., Pickering, L., Gore, M., Larkin, J., Szallasi, Z.et al. (2014) Systematic evaluation of the prognostic impact and intratumour heterogeneity of clear cell renal cell carcinoma biomarkers. Eur. Urol., 66, 936–948. PubMed PMC
Emerling, B.M., Benes, C.H., Poulogiannis, G., Bell, E.L., Courtney, K., Liu, H., Choo-Wing, R., Bellinger, G., Tsukazawa, K.S., Brown, V.et al. (2013) Identification of CDCP1 as a hypoxia-inducible factor 2α (HIF-2α) target gene that is associated with survival in clear cell renal cell carcinoma patients. Proc. Natl. Acad. Sci. U. S. A., 110, 3483–3488. PubMed PMC
Razorenova, O.V., Finger, E.C., Colavitti, R., Chernikova, S.B., Boiko, A.D., Chan, C.K., Krieg, A., Bedogni, B., LaGory, E., Weissman, I.L.et al. (2011) VHL loss in renal cell carcinoma leads to up-regulation of CUB domain-containing protein 1 to stimulate PKC{delta}-driven migration. Proc. Natl. Acad. Sci. U. S. A., 108, 1931–1936. PubMed PMC
Hong, B., Zhou, J., Ma, K., Zhang, J., Xie, H., Zhang, K., Li, L., Cai, L., Zhang, N., Zhang, Z.et al. (2019) TRIB3 promotes the proliferation and invasion of renal cell carcinoma cells via activating MAPK Signaling pathway. Int. J. Biol. Sci., 15, 587–597. PubMed PMC
Harrington, B.S., He, Y., Khan, T., Puttick, S., Conroy, P.J., Kryza, T., Cuda, T., Sokolowski, K.A., Tse, B.W., Robbins, K.K.et al. (2020) Anti-CDCP1 immuno-conjugates for detection and inhibition of ovarian cancer. Theranostics, 10, 2095–2114. PubMed PMC
Mondal, D., Mathur, A. and Chandra, P.K. (2016) Tripping on TRIB3 at the junction of health, metabolic dysfunction and cancer. Biochimie, 124, 34–52. PubMed
Hock, H. and Shimamura, A. (2017) ETV6 in hematopoiesis and leukemia predisposition. Semin. Hematol., 54, 98–104. PubMed PMC
Guo, C., Gao, C., Zhao, D., Li, J., Wang, J., Sun, X., Liu, Q., Hao, L., Greenaway, F.T., Tian, Y.et al. (2020) A novel ETV6-miR-429-CRKL regulatory circuitry contributes to aggressiveness of hepatocellular carcinoma. J. Exp. Clin. Cancer Res., 39, 70. PubMed PMC
Kim, I., Kang, J., Gee, H.Y. and Park, J.W. (2018) A novel HIF1AN substrate KANK3 plays a tumor-suppressive role in hepatocellular carcinoma. Cell Biol. Int., 42, 303–312. PubMed
Lesicka, M., Jabłońska, E., Wieczorek, E., Pepłońska, B., Gromadzińska, J., Seroczyńska, B., Kalinowski, L., Skokowski, J. and Reszka, E. (2019) Circadian gene polymorphisms associated with breast cancer susceptibility. Int. J. Mol. Sci., 20. PubMed PMC
Qiu, M.J., Liu, L.P., Jin, S., Fang, X.F., He, X.X., Xiong, Z.F. and Yang, S.L. (2019) Research on circadian clock genes in common abdominal malignant tumors. Chronobiol. Int., 36, 906–918. PubMed
Jensen, L.D. (2015) The circadian clock and hypoxia in tumor cell de-differentiation and metastasis. Biochim. Biophys. Acta, 1850, 1633–1641. PubMed
Trabzuni, D., Ramasamy, A., Imran, S., Walker, R., Smith, C., Weale, M.E., Hardy, J., Ryten, M. and North American Brain Expression, C (2013) Widespread sex differences in gene expression and splicing in the adult human brain. Nat. Commun., 4, 2771. PubMed PMC
Ngo, S.T., Steyn, F.J. and McCombe, P.A. (2014) Gender differences in autoimmune disease. Front. Neuroendocrinol., 35, 347–369. PubMed
Du, P., Kibbe, W.A. and Lin, S.M. (2008) Lumi: a pipeline for processing Illumina microarray. Bioinform. (Oxford, England), 24, 1547–1548. PubMed
Johnson, W.E., Li, C. and Rabinovic, A. (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostat. (Oxford, England), 8, 118–127. PubMed
Hoffman, G.E. and Schadt, E.E. (2016) Variance partition: interpreting drivers of variation in complex gene expression studies. B.M.C. Bioinform., 17, 483. PubMed PMC
Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M. and Gingeras, T.R. (2013) STAR: ultrafast universal RNA-seq aligner. Bioinform. (Oxford, England), 29, 15–21. PubMed PMC
Anders, S., Pyl, P.T. and Huber, W. (2015) HTSeq--a python framework to work with high-throughput sequencing data. Bioinform. (Oxford, England), 31, 166–169. PubMed PMC
Robinson, M.D., McCarthy, D.J. and Smyth, G.K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinform. (Oxford, England), 26, 139–140. PubMed PMC
Langfelder, P. and Horvath, S. (2008) WGCNA: an R package for weighted correlation network analysis. B.M.C. Bioinform., 9, 559. PubMed PMC
Langfelder, P., Luo, R., Oldham, M.C. and Horvath, S. (2011) Is my network module preserved and reproducible? PLoS Comput. Biol., 7, e1001057. PubMed PMC
Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S.et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A., 102, 15545–15550. PubMed PMC
Jawaid, W. (2019) enrichR: Provides an R Interface to 'Enrichr'. R package in CRAN. https://CRAN.R-project.org/package=enrichR.
Kuleshov, M.V., Jones, M.R., Rouillard, A.D., Fernandez, N.F., Duan, Q., Wang, Z., Koplev, S., Jenkins, S.L., Jagodnik, K.M., Lachmann, A.et al. (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res., 44, W90–W97. PubMed PMC
Purdue, M.P., Johansson, M., Zelenika, D., Toro, J.R., Scelo, G., Moore, L.E., Prokhortchouk, E., Wu, X., Kiemeney, L.A., Gaborieau, V.et al. (2011) Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3 Nat. Genet., 43, 60–65. PubMed PMC
Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. and Abecasis, G.R. (2012) Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat. Genet., 44, 955–959. PubMed PMC
Abecasis, G.R., Auton, A., Brooks, L.D., DePristo, M.A., Durbin, R.M., Handsaker, R.E., Kang, H.M., Marth, G.T. and McVean, G.A. (2012) An integrated map of genetic variation from 1,092 human genomes. Nature, 491, 56–65. PubMed PMC
Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, M.E., Shadick, N.A. and Reich, D. (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet., 38, 904–909. PubMed
Shabalin, A.A. (2012) Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinform. (Oxford, England), 28, 1353–1358. PubMed PMC
Therneau, T. (2020) A Package for Survival Analysis in R. R-package survival. https://CRAN.R-project.org/package=survival.
Kassambara, A., Kosinski, M. and Biecek, P. (2020) survminer: Drawing Survival Curves using 'ggplot2'. https://CRAN.R-project.org/package=survminer.
R Core Team . (2018) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing,Vienna, Austria, in press, https://www.R-project.org.
Wickham, H. (2016) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York, in press.
Understanding the biological processes of kidney carcinogenesis: an integrative multi-omics approach