Information processing in the LGN: a comparison of neural codes and cell types

. 2019 Aug ; 113 (4) : 453-464. [epub] 20190626

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu srovnávací studie, časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31243531

Grantová podpora
P50 GM071558 NIGMS NIH HHS - United States
R01 EY016224 NEI NIH HHS - United States
K25 MH067225 NIMH NIH HHS - United States
R21 MH093868 NIMH NIH HHS - United States

Odkazy

PubMed 31243531
PubMed Central PMC6658673
DOI 10.1007/s00422-019-00801-0
PII: 10.1007/s00422-019-00801-0
Knihovny.cz E-zdroje

To understand how anatomy and physiology allow an organism to perform its function, it is important to know how information that is transmitted by spikes in the brain is received and encoded. A natural question is whether the spike rate alone encodes the information about a stimulus (rate code), or additional information is contained in the temporal pattern of the spikes (temporal code). Here we address this question using data from the cat Lateral Geniculate Nucleus (LGN), which is the visual portion of the thalamus, through which visual information from the retina is communicated to the visual cortex. We analyzed the responses of LGN neurons to spatially homogeneous spots of various sizes with temporally random luminance modulation. We compared the Firing Rate with the Shannon Information Transmission Rate , which quantifies the information contained in the temporal relationships between spikes. We found that the behavior of these two rates can differ quantitatively. This suggests that the energy used for spiking does not translate directly into the information to be transmitted. We also compared Firing Rates with Information Rates for X-ON and X-OFF cells. We found that, for X-ON cells the Firing Rate and Information Rate often behave in a completely different way, while for X-OFF cells these rates are much more highly correlated. Our results suggest that for X-ON cells a more efficient "temporal code" is employed, while for X-OFF cells a straightforward "rate code" is used, which is more reliable and is correlated with energy consumption.

Zobrazit více v PubMed

Adrian ED. The impulses produced by sensory nerve endings. J Physiol. 1926;61:4972. PubMed PMC

Amigo JM, Szczepanski J, Wajnryb E, Sanchez-Vives MV. Estimating the entropy rate of spike trains via Lempel–Ziv complexity. Neural Comput. 2004;1386:717–736. PubMed

Ash RB. The mathematical theory of communication. New York: Wiley; 1965.

Attwell D, Laughlin S. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab. 2001;21:1133–1145. PubMed

Barlow HB (1961) Possible principles underlying the transformation of sensory messages. In: Sensory communication, MIT Press, Cambridge, pp 217–234

Benardete EA, Kaplan E. The dynamics of primate M retinal ganglion cells. Vis Neurosci. 1999;16:355–368. PubMed

Bialek W, Rieke F, deRuytervanSteveninck RR, Warland DD. Reading a neural code. Science. 1991;252(5014):1854–1857. PubMed

Bishop PO. Synaptic transmission. An analysis of the electrical activity of the lateral geniculate nucleus in the cat after optic nerve stimulation. Proc R Soc B. 1953;141:362–392. PubMed

Borst A, Theunissen FE. Information theory and neural coding. Nat Neurosci. 1999;2:947–957. PubMed

Bossomaier T, Barnett L, Harre M, Lizier JT. An introduction to transfer entropy. Dordrecht: Springer; 2016.

Brown EN, Barbieri R, V V, Kass RE, Frank LM. The time-rescaling theorem and its application to neural spike train data analysis. Neural Comput. 2002;14(2):325–346. PubMed

Butts DA, Weng C, Jin J, Yeh CI, Lesica NA, Alonso JM, Stanley GB. Temporal precision in the neural code and the timescales of natural vision. Nature. 2007;449(7158):92–95. PubMed

Carandini M (2016) Light adaptation explains different linearity of on and off responses. bioRxiv

Casti A, Hayot F, Xiao Y, Kaplan E. A simple model of retina-lgn transmission. J Comput Neurosci. 2008;24(2):235–52. PubMed

Cerquera A, Freund J. Fast estimation of motion from selected populations of retinal ganglion cells. Biol Cybern. 2011;104:53–64. PubMed

Chichilnisky EJ, Kalmar RS. Functional asymmetries in on and off ganglion cells of primate retina. J Neurosci. 2002;22:2737–2747. PubMed PMC

Churchland MM, Yu BM, Cunningham JP, Sugrue LP, Cohen MR, Corrado GS, Newsome WT, Clark AM, Hosseini P, Scott BB, Bradley DC, Smith MA, Kohn A, Movshon JA, Armstrong KM, Moore T, Chang SW, Snyder LH, Lisberger SG, Priebe NJ, Finn IM, Ferster D, Ryu SI, Santhanam G, Sahani M, Shenoy KV. Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nat Neurosci. 2010;13:369–378. PubMed PMC

Cover TM, Thomas JA. Elements of information theory. New York: Wiley; 1991.

Crumiller M, Knight B, Yu Y, Kaplan E. Estimating the amount of information conveyed by a population of neurons. Front Neurosci. 2011;5:90. PubMed PMC

Crumiller M, Knight B, Kaplan E. The measurement of information transmitted by a neural population: promises and challenges. Entropy. 2013;15(9):3507–3527.

Donoghue JP. Connecting cortex to machines: recent advances in brain interfaces. Nat Neurosci. 2002;5:1085–1088. PubMed

Fairhall AL, Lewen GD, Bialek W, van Steveninck RRR. Efficiency and ambiguity in an adaptive neural code. Nature. 2001;421:787–792. PubMed

Gao Y, Kontoyiannis I, Bienenstock E. Estimating the entropy of binary time series: methodology, some theory and a simulation study. Entropy. 2008;10:71–99.

Gerstner W, Kistler WM, Naud R, Paninski L. Neuronal dynamics. From single neurons to networks and models of cognition. Cambridge: Cambridge Univeristy Press; 2014.

Gollisch T, Meister M. Rapid neural coding in the retina with relative spike latencies. Science. 2008;319(5866):1108–1111. PubMed

Harris JJ, Jolivet R, Engl E, Attwell D. Energy-efficient information transfer by visual pathway synapses. Curr Biol. 2015;25:3151–3160. PubMed PMC

Hartline HK. The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Am J Physiol. 1938;121:400–415.

Im M, Fried SI. Indirect activation elicits strong correlations between light and electrical responses in on but not off retinal ganglion cells. J Physiol. 2015;593(16):3577–3596. PubMed PMC

Jiang Y, Purushothaman G, Casagrande VA. The functional asymmetry of on and off channels in the perception of contrast. J Neurophysiol. 2015;114:2816–2829. PubMed PMC

Kaplan E, Shapley R. The origin of the s (slow) potential in the mammalian lateral geniculate nucleus. Exp Brain Res. 1984;55:111–116. PubMed

Kaplan E, Shapley RM. The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proc Natl Acad Sci USA. 1986;83(8):2755–2757. PubMed PMC

Kaplan E, Purpura K, Shapley RM. Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. J Physiol. 1987;391:267–288. PubMed PMC

Kennel MB, Shlens J, Abarbanel HDI, Chichilinsky EJ. Estimating entropy rates with Bayesian confidence intervals. Neural Comput. 2005;17:1531–1576. PubMed

Kuffler SW. Discharge patterns and functional organization of mammalian retina. J Neurophysiol. 1953;16:37–68. PubMed

Laughlin S, van Steveninck R, Anderson J. The metabolic cost of neural information. Nat Neurosci. 1998;1:36–41. PubMed

Lempel A, Ziv J. On the complexity of individual sequences. IEEE Trans Inf Theory. 1976;22:75–81.

Lengler J, Steger A. Note on the coefficient of variations of neuronal spike trains. Biol Cybern. 2017;111(3–4):229–235. PubMed

Lesne A, Blanc JL, Pezard L (2009) Entropy estimation of very short symbolic sequences. Phys Rev E 79(4)34:art. no.046208 PubMed

Lestienne R. Spike timing, synchronization and information processing on the sensory side of the central nervous system. Prog Neurobiol. 2001;65:545–591. PubMed

Levy WB, Baxter RA. Energy efficient neural codes. Neural Comput. 1996;8(3):531–543. PubMed

Levy WB, Baxter RA. Energy-efficient neuronal computation via quantal synaptic failures. J Neurosci. 2002;22:4746–4755. PubMed PMC

London M, Larkum ME, Hausser M. Predicting the synaptic information efficiency in cortical layer 5pyramidal cells using a minimal integrate-and-fire model. Biol Cybern. 2008;99(4–5):393–401. PubMed PMC

MacKay DM, McCulloch WS. The limiting information capacity of a neuronal link. Bull Math Biophys. 1952;14(2):127–135.

Mainen ZF, Sejnowski TJ. Reliability of spike timing in neocortical neurons. Science. 1995;268:1503–1506. PubMed

Margolis DJ, Detwiler PB (2007) Different mechanisms generate maintained activity in on and off retinal ganglion cells. J Neurosci 27(22):5994–6005. 10.1523/JNEUROSCI.0130-07.2007. http://www.jneurosci.org/content/27/22/5994. http://www.jneurosci.org/content/27/22/5994.full.pdf PubMed DOI PMC

Meister M, Berry MJ. The neural code of the retina. Neuron. 1999;22:435–450. PubMed

Nemenman I, Bialek W, van Steveninck RR. Entropy and information in neural spike trains: progress on the sampling problem. Phys Rev E. 2004;69:056111. PubMed

Ozaki T, Kaplan E. Brainstem input modulates globally the transmission through the lateral geniculate nucleus. Int J Neurosci. 2006;116:247–264. PubMed

Paninski L. Estimation of entropy and mutual information. Neural Comput. 2003;15:1191–1253.

Paprocki B, Szczepanski J. Efficiency of neural transmission as a function of synaptic noise, threshold, and source characteristics. BioSyst. 2011;105:62–72. PubMed

Paprocki B, Szczepanski J. How do the amplitude fluctuations affect the neuronal transmission efficiency. Neurocomputing. 2013;104:50–56.

Paprocki B, Szczepanski J. Transmission efficiency in ring, brain inspired neuronal networks, information and energetic aspects. Brain Res. 2013;105:135–143. PubMed

Passaglia CL, Enroth-Cugell C, Troy JB (2001) Effects of remote stimulation on the mean firing rate of cat retinal ganglion cells. J Neurosci 21(15):5794–5803. 10.1523/JNEUROSCI.21-15-05794.2001. http://www.jneurosci.org/content/21/15/5794. http://www.jneurosci.org/content/21/15/5794.full.pdf PubMed DOI PMC

Pillow JW, Ahmadian Y, Paninski L. Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains. Neural Comput. 2011;23(1):1–45. PubMed

Poria D, Dhingra NK. Spontaneous oscillatory activity in rd1 mouse retina is transferred from on pathway to off pathway via glycinergic synapse. J Neurophysiol. 2015;113:420–425. PubMed

Pregowska A, Szczepanski J, Wajnryb E. Mutual information against correlations in binary communication channel. BMC Neurosci. 2015;16(32):1–7. PubMed PMC

Pregowska A, Szczepanski J, Wajnryb E. Temporal code versus rate code for binary information source. Neurocomputing. 2016;216:756–762.

Rathbun DL, Alitto HJ, Warland DK, Usrey WM. Stimulus contrast and retinogeniculate signal processing. Front Neural Circ. 2016;10(8):1–10. PubMed PMC

Reid RC, Victor JD, Shapley RM. The use of m-sequences in the analysis of visual neurons: linear receptive field properties. Vis Neurosci. 1997;14(6):1015–27. PubMed

Reinagel P, Reid RC. Temporal coding of visual information in the thalamus. J Neurosci. 2000;20(14):5392–5400. PubMed PMC

Rieke F, Warland D, van Steveninck RR, Bialek W. Spikes. Exploring the neural code. Cambridge: MIT Press; 1997.

Rokem A, Watzl S, Gollisch T, Stemmler M, Herz AVM, Samengo I. Spike-timing precision underlies the coding efficiency of auditory receptor neurons. J Neurophysiol. 2006;95:2541–2552. PubMed

Rolls ET. The representation of information about faces in the temporal and frontal lobes. Neuropsychologia. 2007;45:124–143. PubMed

Schiller PH. The on and off channels of the visual system. Trends Neurosci. 1992;15:86–92. PubMed

Shadlen MN, Newsome WT. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci. 1998;18(10):3870–3896. PubMed PMC

Shannon C. A mathematical theory of communication. Bell Syst Tech J. 1948;27:379–423.

Shapley R, Perry VH. Cat and monkey retinal ganglion cells and their visual functional roles. Trends Neurosci. 1986;9:229–235.

Srinivasan MV, Laughlin SB, Dubs A. Predictive coding: a fresh view of inhibition in the retina. Proc R Soc B Biol Sci. 1982;216:427–459. PubMed

Strong SP, Koberle R, van Steveninck RRR, Bialek W. Entropy and information in neural spike trains. Phys Rev Lett. 1998;80(1):197–200.

Szczepanski J, Amigo JM, Wajnryb E, Sanchez-Vives M. Application of Lempel–Ziv complexity to the analysis of neural discharges. Netw Comput Neural Syst. 2003;74:335–350. PubMed

Szczepanski J, Wajnryb E, Amigo JM, Sanchez-Vives MV, Slater M. Biometric random number generators. Comput Secur. 2004;23(1):77–84.

Theunissen F, Miller JP. Temporal encoding in nervous systems: a rigorous definition. J Comput Neurosci. 1995;2(2):149–162. PubMed

Uglesich R, Casti A, Hayot F, Kaplan E. Stimulus size dependence of information transfer from retina to thalamus. Front Syst Neurosci. 2009;3(10):1–9. PubMed PMC

Urner M, Sarri M, Grahn J, Manly T, Rees G, Friston K. The role of prestimulus activity in visual extinction. Neuropsychologia. 2013;51:1630–1637. PubMed PMC

van Hateren JH. Processing of natural time series of intensities by the visual system of the blowfly. Vis Res. 1997;37:3407–3416. PubMed

van Hemmen JL, Sejnowski T. 23 Problems in systems neurosciences. Oxford: Oxford University Press; 2006.

Van Rullen R, Thorpe SJ. Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex. Neural Comput. 2001;13(6):1255–1283. PubMed

VanRullen R, Guyonneau R, Thorpe SJ. Spike times make sense. Trends Neurosci. 2005;28:1–4. PubMed

Voronenko V, Lindner B. Improved lower bound for the mutual information between signal and neural spike count. Biol Cybern. 2018;112(6):523–538. PubMed

Zaghloul KA, Boahen K, Demb JB. Different circuits for on and off retinal ganglion cells cause different contrast sensitivities. J Neurosci. 2003;23(7):2645–2654. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...