Information processing in the LGN: a comparison of neural codes and cell types
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P50 GM071558
NIGMS NIH HHS - United States
R01 EY016224
NEI NIH HHS - United States
K25 MH067225
NIMH NIH HHS - United States
R21 MH093868
NIMH NIH HHS - United States
PubMed
31243531
PubMed Central
PMC6658673
DOI
10.1007/s00422-019-00801-0
PII: 10.1007/s00422-019-00801-0
Knihovny.cz E-zdroje
- Klíčová slova
- Cat LGN, Entropy, Firing rate, Neural coding, ON–OFF cells, Shannon information theory,
- MeSH
- akční potenciály fyziologie MeSH
- duševní procesy fyziologie MeSH
- kočky MeSH
- metathalamus cytologie fyziologie MeSH
- neurony fyziologie MeSH
- světelná stimulace metody MeSH
- zrakové dráhy cytologie fyziologie MeSH
- zrakové korové centrum cytologie fyziologie MeSH
- zvířata MeSH
- Check Tag
- kočky MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- srovnávací studie MeSH
To understand how anatomy and physiology allow an organism to perform its function, it is important to know how information that is transmitted by spikes in the brain is received and encoded. A natural question is whether the spike rate alone encodes the information about a stimulus (rate code), or additional information is contained in the temporal pattern of the spikes (temporal code). Here we address this question using data from the cat Lateral Geniculate Nucleus (LGN), which is the visual portion of the thalamus, through which visual information from the retina is communicated to the visual cortex. We analyzed the responses of LGN neurons to spatially homogeneous spots of various sizes with temporally random luminance modulation. We compared the Firing Rate with the Shannon Information Transmission Rate , which quantifies the information contained in the temporal relationships between spikes. We found that the behavior of these two rates can differ quantitatively. This suggests that the energy used for spiking does not translate directly into the information to be transmitted. We also compared Firing Rates with Information Rates for X-ON and X-OFF cells. We found that, for X-ON cells the Firing Rate and Information Rate often behave in a completely different way, while for X-OFF cells these rates are much more highly correlated. Our results suggest that for X-ON cells a more efficient "temporal code" is employed, while for X-OFF cells a straightforward "rate code" is used, which is more reliable and is correlated with energy consumption.
Department of Philosophy of Science Charles University Prague Czech Republic
Icahn School of Medicine at Mount Sinai New York NY 10029 USA
National Institute of Mental Health Topolova 748 250 67 Klecany Czech Republic
Zobrazit více v PubMed
Adrian ED. The impulses produced by sensory nerve endings. J Physiol. 1926;61:4972. PubMed PMC
Amigo JM, Szczepanski J, Wajnryb E, Sanchez-Vives MV. Estimating the entropy rate of spike trains via Lempel–Ziv complexity. Neural Comput. 2004;1386:717–736. PubMed
Ash RB. The mathematical theory of communication. New York: Wiley; 1965.
Attwell D, Laughlin S. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab. 2001;21:1133–1145. PubMed
Barlow HB (1961) Possible principles underlying the transformation of sensory messages. In: Sensory communication, MIT Press, Cambridge, pp 217–234
Benardete EA, Kaplan E. The dynamics of primate M retinal ganglion cells. Vis Neurosci. 1999;16:355–368. PubMed
Bialek W, Rieke F, deRuytervanSteveninck RR, Warland DD. Reading a neural code. Science. 1991;252(5014):1854–1857. PubMed
Bishop PO. Synaptic transmission. An analysis of the electrical activity of the lateral geniculate nucleus in the cat after optic nerve stimulation. Proc R Soc B. 1953;141:362–392. PubMed
Borst A, Theunissen FE. Information theory and neural coding. Nat Neurosci. 1999;2:947–957. PubMed
Bossomaier T, Barnett L, Harre M, Lizier JT. An introduction to transfer entropy. Dordrecht: Springer; 2016.
Brown EN, Barbieri R, V V, Kass RE, Frank LM. The time-rescaling theorem and its application to neural spike train data analysis. Neural Comput. 2002;14(2):325–346. PubMed
Butts DA, Weng C, Jin J, Yeh CI, Lesica NA, Alonso JM, Stanley GB. Temporal precision in the neural code and the timescales of natural vision. Nature. 2007;449(7158):92–95. PubMed
Carandini M (2016) Light adaptation explains different linearity of on and off responses. bioRxiv
Casti A, Hayot F, Xiao Y, Kaplan E. A simple model of retina-lgn transmission. J Comput Neurosci. 2008;24(2):235–52. PubMed
Cerquera A, Freund J. Fast estimation of motion from selected populations of retinal ganglion cells. Biol Cybern. 2011;104:53–64. PubMed
Chichilnisky EJ, Kalmar RS. Functional asymmetries in on and off ganglion cells of primate retina. J Neurosci. 2002;22:2737–2747. PubMed PMC
Churchland MM, Yu BM, Cunningham JP, Sugrue LP, Cohen MR, Corrado GS, Newsome WT, Clark AM, Hosseini P, Scott BB, Bradley DC, Smith MA, Kohn A, Movshon JA, Armstrong KM, Moore T, Chang SW, Snyder LH, Lisberger SG, Priebe NJ, Finn IM, Ferster D, Ryu SI, Santhanam G, Sahani M, Shenoy KV. Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nat Neurosci. 2010;13:369–378. PubMed PMC
Cover TM, Thomas JA. Elements of information theory. New York: Wiley; 1991.
Crumiller M, Knight B, Yu Y, Kaplan E. Estimating the amount of information conveyed by a population of neurons. Front Neurosci. 2011;5:90. PubMed PMC
Crumiller M, Knight B, Kaplan E. The measurement of information transmitted by a neural population: promises and challenges. Entropy. 2013;15(9):3507–3527.
Donoghue JP. Connecting cortex to machines: recent advances in brain interfaces. Nat Neurosci. 2002;5:1085–1088. PubMed
Fairhall AL, Lewen GD, Bialek W, van Steveninck RRR. Efficiency and ambiguity in an adaptive neural code. Nature. 2001;421:787–792. PubMed
Gao Y, Kontoyiannis I, Bienenstock E. Estimating the entropy of binary time series: methodology, some theory and a simulation study. Entropy. 2008;10:71–99.
Gerstner W, Kistler WM, Naud R, Paninski L. Neuronal dynamics. From single neurons to networks and models of cognition. Cambridge: Cambridge Univeristy Press; 2014.
Gollisch T, Meister M. Rapid neural coding in the retina with relative spike latencies. Science. 2008;319(5866):1108–1111. PubMed
Harris JJ, Jolivet R, Engl E, Attwell D. Energy-efficient information transfer by visual pathway synapses. Curr Biol. 2015;25:3151–3160. PubMed PMC
Hartline HK. The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Am J Physiol. 1938;121:400–415.
Im M, Fried SI. Indirect activation elicits strong correlations between light and electrical responses in on but not off retinal ganglion cells. J Physiol. 2015;593(16):3577–3596. PubMed PMC
Jiang Y, Purushothaman G, Casagrande VA. The functional asymmetry of on and off channels in the perception of contrast. J Neurophysiol. 2015;114:2816–2829. PubMed PMC
Kaplan E, Shapley R. The origin of the s (slow) potential in the mammalian lateral geniculate nucleus. Exp Brain Res. 1984;55:111–116. PubMed
Kaplan E, Shapley RM. The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proc Natl Acad Sci USA. 1986;83(8):2755–2757. PubMed PMC
Kaplan E, Purpura K, Shapley RM. Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. J Physiol. 1987;391:267–288. PubMed PMC
Kennel MB, Shlens J, Abarbanel HDI, Chichilinsky EJ. Estimating entropy rates with Bayesian confidence intervals. Neural Comput. 2005;17:1531–1576. PubMed
Kuffler SW. Discharge patterns and functional organization of mammalian retina. J Neurophysiol. 1953;16:37–68. PubMed
Laughlin S, van Steveninck R, Anderson J. The metabolic cost of neural information. Nat Neurosci. 1998;1:36–41. PubMed
Lempel A, Ziv J. On the complexity of individual sequences. IEEE Trans Inf Theory. 1976;22:75–81.
Lengler J, Steger A. Note on the coefficient of variations of neuronal spike trains. Biol Cybern. 2017;111(3–4):229–235. PubMed
Lesne A, Blanc JL, Pezard L (2009) Entropy estimation of very short symbolic sequences. Phys Rev E 79(4)34:art. no.046208 PubMed
Lestienne R. Spike timing, synchronization and information processing on the sensory side of the central nervous system. Prog Neurobiol. 2001;65:545–591. PubMed
Levy WB, Baxter RA. Energy efficient neural codes. Neural Comput. 1996;8(3):531–543. PubMed
Levy WB, Baxter RA. Energy-efficient neuronal computation via quantal synaptic failures. J Neurosci. 2002;22:4746–4755. PubMed PMC
London M, Larkum ME, Hausser M. Predicting the synaptic information efficiency in cortical layer 5pyramidal cells using a minimal integrate-and-fire model. Biol Cybern. 2008;99(4–5):393–401. PubMed PMC
MacKay DM, McCulloch WS. The limiting information capacity of a neuronal link. Bull Math Biophys. 1952;14(2):127–135.
Mainen ZF, Sejnowski TJ. Reliability of spike timing in neocortical neurons. Science. 1995;268:1503–1506. PubMed
Margolis DJ, Detwiler PB (2007) Different mechanisms generate maintained activity in on and off retinal ganglion cells. J Neurosci 27(22):5994–6005. 10.1523/JNEUROSCI.0130-07.2007. http://www.jneurosci.org/content/27/22/5994. http://www.jneurosci.org/content/27/22/5994.full.pdf PubMed DOI PMC
Meister M, Berry MJ. The neural code of the retina. Neuron. 1999;22:435–450. PubMed
Nemenman I, Bialek W, van Steveninck RR. Entropy and information in neural spike trains: progress on the sampling problem. Phys Rev E. 2004;69:056111. PubMed
Ozaki T, Kaplan E. Brainstem input modulates globally the transmission through the lateral geniculate nucleus. Int J Neurosci. 2006;116:247–264. PubMed
Paninski L. Estimation of entropy and mutual information. Neural Comput. 2003;15:1191–1253.
Paprocki B, Szczepanski J. Efficiency of neural transmission as a function of synaptic noise, threshold, and source characteristics. BioSyst. 2011;105:62–72. PubMed
Paprocki B, Szczepanski J. How do the amplitude fluctuations affect the neuronal transmission efficiency. Neurocomputing. 2013;104:50–56.
Paprocki B, Szczepanski J. Transmission efficiency in ring, brain inspired neuronal networks, information and energetic aspects. Brain Res. 2013;105:135–143. PubMed
Passaglia CL, Enroth-Cugell C, Troy JB (2001) Effects of remote stimulation on the mean firing rate of cat retinal ganglion cells. J Neurosci 21(15):5794–5803. 10.1523/JNEUROSCI.21-15-05794.2001. http://www.jneurosci.org/content/21/15/5794. http://www.jneurosci.org/content/21/15/5794.full.pdf PubMed DOI PMC
Pillow JW, Ahmadian Y, Paninski L. Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains. Neural Comput. 2011;23(1):1–45. PubMed
Poria D, Dhingra NK. Spontaneous oscillatory activity in rd1 mouse retina is transferred from on pathway to off pathway via glycinergic synapse. J Neurophysiol. 2015;113:420–425. PubMed
Pregowska A, Szczepanski J, Wajnryb E. Mutual information against correlations in binary communication channel. BMC Neurosci. 2015;16(32):1–7. PubMed PMC
Pregowska A, Szczepanski J, Wajnryb E. Temporal code versus rate code for binary information source. Neurocomputing. 2016;216:756–762.
Rathbun DL, Alitto HJ, Warland DK, Usrey WM. Stimulus contrast and retinogeniculate signal processing. Front Neural Circ. 2016;10(8):1–10. PubMed PMC
Reid RC, Victor JD, Shapley RM. The use of m-sequences in the analysis of visual neurons: linear receptive field properties. Vis Neurosci. 1997;14(6):1015–27. PubMed
Reinagel P, Reid RC. Temporal coding of visual information in the thalamus. J Neurosci. 2000;20(14):5392–5400. PubMed PMC
Rieke F, Warland D, van Steveninck RR, Bialek W. Spikes. Exploring the neural code. Cambridge: MIT Press; 1997.
Rokem A, Watzl S, Gollisch T, Stemmler M, Herz AVM, Samengo I. Spike-timing precision underlies the coding efficiency of auditory receptor neurons. J Neurophysiol. 2006;95:2541–2552. PubMed
Rolls ET. The representation of information about faces in the temporal and frontal lobes. Neuropsychologia. 2007;45:124–143. PubMed
Schiller PH. The on and off channels of the visual system. Trends Neurosci. 1992;15:86–92. PubMed
Shadlen MN, Newsome WT. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci. 1998;18(10):3870–3896. PubMed PMC
Shannon C. A mathematical theory of communication. Bell Syst Tech J. 1948;27:379–423.
Shapley R, Perry VH. Cat and monkey retinal ganglion cells and their visual functional roles. Trends Neurosci. 1986;9:229–235.
Srinivasan MV, Laughlin SB, Dubs A. Predictive coding: a fresh view of inhibition in the retina. Proc R Soc B Biol Sci. 1982;216:427–459. PubMed
Strong SP, Koberle R, van Steveninck RRR, Bialek W. Entropy and information in neural spike trains. Phys Rev Lett. 1998;80(1):197–200.
Szczepanski J, Amigo JM, Wajnryb E, Sanchez-Vives M. Application of Lempel–Ziv complexity to the analysis of neural discharges. Netw Comput Neural Syst. 2003;74:335–350. PubMed
Szczepanski J, Wajnryb E, Amigo JM, Sanchez-Vives MV, Slater M. Biometric random number generators. Comput Secur. 2004;23(1):77–84.
Theunissen F, Miller JP. Temporal encoding in nervous systems: a rigorous definition. J Comput Neurosci. 1995;2(2):149–162. PubMed
Uglesich R, Casti A, Hayot F, Kaplan E. Stimulus size dependence of information transfer from retina to thalamus. Front Syst Neurosci. 2009;3(10):1–9. PubMed PMC
Urner M, Sarri M, Grahn J, Manly T, Rees G, Friston K. The role of prestimulus activity in visual extinction. Neuropsychologia. 2013;51:1630–1637. PubMed PMC
van Hateren JH. Processing of natural time series of intensities by the visual system of the blowfly. Vis Res. 1997;37:3407–3416. PubMed
van Hemmen JL, Sejnowski T. 23 Problems in systems neurosciences. Oxford: Oxford University Press; 2006.
Van Rullen R, Thorpe SJ. Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex. Neural Comput. 2001;13(6):1255–1283. PubMed
VanRullen R, Guyonneau R, Thorpe SJ. Spike times make sense. Trends Neurosci. 2005;28:1–4. PubMed
Voronenko V, Lindner B. Improved lower bound for the mutual information between signal and neural spike count. Biol Cybern. 2018;112(6):523–538. PubMed
Zaghloul KA, Boahen K, Demb JB. Different circuits for on and off retinal ganglion cells cause different contrast sensitivities. J Neurosci. 2003;23(7):2645–2654. PubMed PMC