Age-Related Differences With Immersive and Non-immersive Virtual Reality in Memory Assessment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31244729
PubMed Central
PMC6579887
DOI
10.3389/fpsyg.2019.01330
Knihovny.cz E-zdroje
- Klíčová slova
- aging, immersion, memory assessment, neurocognitive methods, virtual reality,
- Publikační typ
- časopisecké články MeSH
Memory decline associated with physiological aging and age-related neurological disorders has a direct impact on quality of life for seniors. With demographic aging, the assessment of cognitive functions is gaining importance, as early diagnosis can lead to more effective cognitive interventions. In comparison to classic paper-and-pencil approaches, virtual reality (VR) could offer an ecologically valid environment for assessment and remediation of cognitive deficits. Despite the rapid development and application of new technologies, the results of studies aimed at the role of VR immersion in assessing cognitive performance and the use of VR in aging populations are often ambiguous. VR can be presented in a less immersive form, with a desktop platform, or with more advanced technologies like head-mounted displays (HMDs). Both these VR platforms are associated with certain advantages and disadvantages. In this study, we investigated age-related differences related to the use of desktop and HMD platforms during memory assessment using an intra-subject design. Groups of seniors (N = 36) and young adults (N = 25) completed a virtual Supermarket Shopping task using desktop and HMD platforms in a counterbalanced order. Our results show that the senior performances were superior when using the non-immersive desktop platform. The ability to recall a shopping list in the young adult group remained stable regardless of the platform used. With the HMD platform, the performance of the subjects of both groups seemed to be more influenced by fatigue. The evaluated user experiences did not differ between the two platforms, and only minimal and rare side effects were reported by seniors. This implies that highly immersive technology has good acceptance among aging adults. These findings might have implications for the further use of HMD in cognitive assessment and remediation.
Zobrazit více v PubMed
Adamo-Villani N., Wilbur R. B. (2008). “Effects of platform (immersive versus non-immersive) on usability and enjoyment of a virtual learning environment for deaf and hearing children,” in Posters Presented Eurographics Symposium on Virtual Environments, eds van Liere B., Mohler B. (Genova: The Eurographics Association; ).
Bäckman L., Small B. J., Fratiglioni L. (2001). Stability of the preclinical episodic memory deficit in Alzheimer’s disease. Brain 124 96–102. 10.1093/brain/124.1.96 PubMed DOI
Boraxbekk C. -J., Lundquist A., Nordin A., Nyberg L., Nilsson L.-G., Adolfsson R. (2015). Free recall episodic memory performance predicts dementia ten years prior to clinical diagnosis: findings from the betula longitudinal study. Dement. Geriatr. Cogn. Dis. Extra. 5 191–202. 10.1159/000381535 PubMed DOI PMC
Bowman D. A., Sowndararajan A., Ragan E. D., Kopper R. (2009). “Higher levels of immersion improve procedure memorization performance,” in Proceedings of the 15th Joint Virtual Reality Eurographics Conference on Virtual Environments (Genova: The Eurographics Association; ), 121–128.
Corriveau Lecavalier N., Ouellet É., Boller B., Belleville S. (2018). Use of immersive virtual reality to assess episodic memory: a validation study in older adults. Neuropsychol. Rehabil. 10.1080/09602011.2018.1477684 [Epub ahead of print]. PubMed DOI
Eldadah B. A. (2010). Fatigue and fatigability in older adults. PM&R 2 406–413. 10.1016/j.pmrj.2010.03.022 PubMed DOI
Eurostat (2018). People in the EU - Statistics on an Ageing Society - Statistics Explained Available at: https://ec.europa.eu/eurostat/statistics-explained/index.php/People_in_the_EU_-_statistics_on_an_ageing_society (accessed October 29, 2018).
Franzen M. D. (1997). “The Validity of Neuropsychological Assesment Procedures,” in Biological and Neuropsychological Mechanisms: Life-Span Developmental Psychology - Conference on Life Span Developmental Psychology ed. Reese H. W. (Morgantown, W VA: Psychology Press; ), 51–69
Gamito P., Oliveira J., Santos N., Pacheco J., Morais D., Saraiva T., et al. (2014). Virtual exercises to promote cognitive recovery in stroke patients: the comparison between head mounted displays versus screen exposure methods. Int. J. Disabil. Hum. Dev. 13 337–342. 10.1515/ijdhd-2014-0325 DOI
Harada C. N., Natelson Love M. C., Triebel K. L. (2013). Normal cognitive aging. Clin. Geriatr. Med. 29 737–752. 10.1016/j.cger.2013.07.002 PubMed DOI PMC
Hoogendam Y. Y., van der Lijn F., Vernooij M. W., Hofman A., Niessen W. J., van der Lugt A., et al. (2014). Older age relates to worsening of fine motor skills: a population-based study of middle-aged and elderly persons. Front. Aging Neurosci. 6:259. 10.3389/fnagi.2014.00259 PubMed DOI PMC
Kaufmann H., Dünser A. (2007). “Summary of Usability Evaluations of an Educational Augmented Reality Application,” in Virtual Reality ICVR 2007. Lecture Notes in Computer Science ed. Shumaker R. (Berlin: Springer; ), 660–669. 10.1007/978-3-540-73335-5_71 DOI
Lewis J. R. (1995). IBM computer usability satisfaction questionnaires: psychometric evaluation and instructions for use. Int. J. Hum. Comput. Interact. 7 57–78. 10.1080/10447319509526110 DOI
Makransky G., Terkildsen T. S., Mayer R. E. (2019). Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learn. Instr. 60 225–236. 10.1016/J.LEARNINSTRUC.2017.12.007 DOI
Mania K., Chalmers A. (2001). The effects of levels of immersion on memory and presence in virtual environments: a reality centered approach. CyberPsychol. Behav. 4 247–264. 10.1089/109493101300117938 PubMed DOI
Martínez-Arán A., Vieta E., Reinares M., Colom F., Torrent C., Sánchez-Moreno J., et al. (2004). Cognitive function across manic or hypomanic, depressed, and euthymic states in bipolar disorder. Am. J. Psychiatry 161 262–270. 10.1176/appi.ajp.161.2.262 PubMed DOI
Moreno R., Mayer R. E. (2004). Personalized messages that promote science learning in virtual environments. J. Educ. Psychol. 96 165–173. 10.1037/0022-0663.96.1.165 DOI
Murcia-López M., Steed A. (2016). The effect of environmental features, self-avatar, and immersion on object location memory in virtual environments. Front. ICT 3:24 10.3389/fict.2016.00024 DOI
Naqvi R., Liberman D., Rosenberg J., Alston J., Straus S. (2013). Preventing cognitive decline in healthy older adults. Can. Med. Assoc. J. 185 881–885. 10.1503/cmaj.121448 PubMed DOI PMC
Neisser U. (1978). “Memory: What are the important questions?,” in Practical Aspects of Memory, eds Gruneberg M., Morris P., Sykes R. (London: Academic Press; ), 3–24.
O’Regan J. K., Noë A. (2001). A sensorimotor account of vision and visual consciousness. Behav. Brain Sci. 24 939–973. 10.1017/S0140525X01000115 PubMed DOI
Parong J., Mayer R. E. (2018). Learning science in immersive virtual reality. J. Educ. Psychol. 110 785–797. 10.1037/edu0000241 DOI
Parsons T. D. (2015). Virtual reality for enhanced ecological validity and experimental control in the clinical, affective and social neurosciences. Front. Hum. Neurosci. 9:660. 10.3389/fnhum.2015.00660 PubMed DOI PMC
Pause B. M., Zlomuzica A., Kinugawa K., Mariani J., Pietrowsky R., Dere E. (2013). Perspectives on episodic-like and episodic memory. Front. Behav. Neurosci. 7:33. 10.3389/fnbeh.2013.00033 PubMed DOI PMC
Plechatá A. (2017). Feasibility of Using Virtual Reality for Remediation Of Memory Deficit in Schizophrenia Patients. Available at: https://dspace.cuni.cz/handle/20.500.11956/93118 (accessed October 31, 2018).
Plechatá A., Fajnerová I., Hejtmánek L., Sahula V. (2017). “Development of a virtual supermarket shopping task for cognitive remediation of memory and executive functions in schizophrenia,” in Proceedings of the 2017 International Conference on Virtual Rehabilitation (ICVR) (Montreal, QC: IEEE; ).
Preiss M. (1999). Pamět’ový Test Učení. [Auditory Verbal Learning test. Manual]. Brno: Psychodiagnostika.
Preiss M., Preiss J. (2006). Test Cesty [Trail Making Test]. Bratislava: MD: Psychodiagnostika.
Preiss M., Rodriguez M., Laing H. (2012). Neuropsychological Battery - Neuropsychologická Baterie Psychiatrického Centra Praha: Klinické Vyšetřeni Zaìkladniìch Kognitivniìch Funkciì, 3rd ed Prague: Psychiatrickeì centrum
Rand D., Kizony R., Feintuch U., Katz N., Josman N., Rizzo A., et al. (2005). Comparison of two VR platforms for rehabilitation: video capture versus HMD. Pres. Teleoperat. Virt. Environ. 14 147–160. 10.1162/1054746053967012 DOI
Reitan R. M., Wolfson D. (1985). The Halstead-Reitan Neuropsychological Test Battery: Theory and Clinical Interpretation. Tucson Ariz: Neuropsychology Press.
Rey A. (1964). L’examen Clinique en Psychologie. 2e éd. Paris: Presses universitaires de France.
Richards D., Taylor M. (2015). A Comparison of learning gains when using a 2D simulation tool versus a 3D virtual world: An experiment to find the right representation involving the marginal value theorem. Comput. Educ. 86 157–171. 10.1016/j.compedu.2015.03.009 DOI
Rizzo A. A., Bowerly T., Buckwalter J. G., Schultheis M., Matheis R., Shahabi C., et al. (2002). “Virtual Environments for the Assessment of Attention and Memory Processes: The Virtual Classroom and Office,” in Proceedings of the International Conference on Disability, Virtual Reality and Associated Technology 2002 (ICDVRAT2000), Vesaprem.
Rönnlund M., Nyberg L., Bäckman L., Nilsson L. -G. (2005). Stability, growth, and decline in adult life span development of declarative memory: cross-sectional and longitudinal data from a population-based study. Psychol. Aging 20 3–18. 10.1037/0882-7974.20.1.3 PubMed DOI
Ruddle R. A., Payne S. J., Jones D. M. (1999). Navigating large-scale virtual environments: what differences occur between helmet-mounted and desk-top displays? Pres. Teleoper. Virt. Environ. 8 157–168. 10.1162/105474699566143 DOI
Slater M. (2009). Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 364 3549–3557. 10.1098/rstb.2009.0138 PubMed DOI PMC
Slater M. (2018). Immersion and the illusion of presence in virtual reality. Br. J. Psychol. 109 431–433. 10.1111/bjop.12305 PubMed DOI
Slater M., Usoh M., Steed A. (1994). Depth of presence in virtual environments. Pres. Teleoperat. Virt. Environ. 3 130–144. 10.1162/pres.1994.3.2.130 DOI
Small S. A. (2001). Age-related memory decline. Arch. Neurol. 58 360–364. 10.1001/archneur.58.3.360 PubMed DOI
Sousa Santos B., Dias P., Pimentel A., Baggerman J.-W., Ferreira C., Silva S., et al. (2009). Head-mounted display versus desktop for 3D navigation in virtual reality: a user study. Multimed. Tools Appl. 41 161–181. 10.1007/s11042-008-0223-2 DOI
Sternberg R. J., Sternberg K., Mio J. S. (2012). Cognitive Psychology. 6th ed Wadsworth: Cengage Learning.
Taylor L. C., Harm D. L., Kennedy R. S., Reschke M. F., Loftin R. B. (2011). “Cybersickness Following Repeated Exposure to DOME and HMD Virtual Environments,” in Proceedings of the 3rd International Symposium on Visual Image Safety Las Vegas, NV.
Tupper D. E., Cicerone K. D. (1990). “Introduction to the Neuropsychology of Everyday Life,” in The Neuropsychology of Everyday Life: Assessment and Basic Competencies, eds Tupper D. E., Cicerone K. D. (Boston, MA: Springer; ) 3–18. 10.1007/978-1-4613-1503-2_1 DOI
United States Census Bureau (2018). Projected Age Groups and Sex Composition of the Population: Main Projections Series for the United States, 2017-2060 Available at: https://www.census.gov/data/tables/2017/demo/popproj/2017-summary-tables.html (accessed October 29, 2018).