Natural trypanocidal product produced by endophytic fungi through co-culturing
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
406413/2018-5
Conselho Nacional de Desenvolvimento Científico e Tecnológico
PubMed
31250361
DOI
10.1007/s12223-019-00727-x
PII: 10.1007/s12223-019-00727-x
Knihovny.cz E-resources
- MeSH
- Endophytes chemistry genetics growth & development MeSH
- Coculture Techniques MeSH
- Plant Leaves microbiology MeSH
- Phanerochaete chemistry genetics growth & development metabolism MeSH
- Tabebuia microbiology MeSH
- Talaromyces chemistry genetics growth & development metabolism MeSH
- Terpenes analysis metabolism pharmacology MeSH
- Trypanocidal Agents analysis metabolism pharmacology MeSH
- Trypanosoma cruzi drug effects growth & development MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- austin MeSH Browser
- Terpenes MeSH
- Trypanocidal Agents MeSH
Endophytic fungi live inside vegetal tissues without causing damage to the host plant and may provide lead compounds for drug discovery. The co-culture of two or more endophytic fungi can trigger silent gene clusters, which could lead to the isolation of bioactive compounds. In this study, two endophytic strains isolated from Handroanthus impetiginosus leaves, identified as Talaromyces purpurogenus H4 and Phanerochaete sp. H2, were grown in mixed and axenic cultures. The meroterpenoid austin was detected only in the extracts from the mixed culture. Once isolated, austin displayed very interesting trypanocidal activity, with an IC50 value of 36.6 ± 1.2 μg/mL against Trypanosoma cruzi in the epimastigote form. The results obtained highlight the importance of the co-culturing of endophytic fungi to obtain natural bioactive products. The findings also enhance our understanding of the ecological relationships between endophytic fungi.
See more in PubMed
Biochim Biophys Acta. 2013 Jun;1830(6):3670-95 PubMed
Org Biomol Chem. 2009 May 7;7(9):1753-60 PubMed
Biotechnol Adv. 2014 Nov 1;32(6):1180-204 PubMed
Fungal Genet Biol. 2010 Jun;47(6):562-71 PubMed
Biotechnol Lett. 2015 Jul;37(7):1325-34 PubMed
Chem Biol Drug Des. 2018 Nov;92(5):1888-1898 PubMed
Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1957-62 PubMed
J Nat Prod. 2017 May 26;80(5):1674-1678 PubMed
Mol Biol Evol. 2007 Aug;24(8):1596-9 PubMed
J Am Chem Soc. 1976 Oct 13;98(21):6748 PubMed
J Basic Microbiol. 2009 Apr;49(2):142-51 PubMed
Rev Inst Med Trop Sao Paulo. 1992 Mar-Apr;34(2):159-65 PubMed
J Mol Biol. 1990 Oct 5;215(3):403-10 PubMed
J Ind Microbiol Biotechnol. 2014 Feb;41(2):185-201 PubMed
J Chem Ecol. 2013 Oct;39(10):1335-42 PubMed
Mini Rev Med Chem. 2016;16(4):259-71 PubMed
Phytochemistry. 2013 Jul;91:81-7 PubMed
Nat Chem Biol. 2011 Dec 15;8(1):26-35 PubMed
J Nat Prod. 2013 Nov 22;76(11):2094-9 PubMed
Neurotoxicology. 2011 Jan;32(1):123-9 PubMed
Pestic Biochem Physiol. 2018 Jan;144:91-99 PubMed
Ecology. 2007 Mar;88(3):541-9 PubMed
J Org Chem. 2006 Nov 10;71(23):8685-90 PubMed