Wheldone Revisited: Structure Revision Via DFT-GIAO Chemical Shift Calculations, 1,1-HD-ADEQUATE NMR Spectroscopy, and X-ray Crystallography Studies
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
P01 CA125066
NCI NIH HHS - United States
PubMed
39039966
PubMed Central
PMC11348420
DOI
10.1021/acs.jnatprod.4c00649
Knihovny.cz E-zdroje
- MeSH
- Aspergillus chemie MeSH
- krystalografie rentgenová metody MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie * metody MeSH
- molekulární struktura MeSH
- Xylariales chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Wheldone is a fungal metabolite isolated from the coculture of Aspergillus fischeri and Xylaria flabelliformis, displaying cytotoxic activity against breast, melanoma, and ovarian cancer cell lines. Initially, its structure was characterized as an unusual 5-methyl-bicyclo[5.4.0]undeca-3,5-diene scaffold with a 2-hydroxy-1-propanone side chain and a 3-(2-(1-hydroxyethyl)-2-methyl-2,5-dihydrofuran-3-yl)acrylic acid moiety. Upon further examination, minor inconsistencies in the data suggested the need for the structure to be revisited. Thus, the structure of wheldone has been revised using an orthogonal experimental-computational approach, which combines 1,1-HD-ADEQUATE NMR experiments, DFT-GIAO chemical shift calculations, and single-crystal X-ray diffraction (SCXRD) analysis of a semisynthetic p-bromobenzylamide derivative, formed via a Steglich-type reaction. The summation of these data now permits the unequivocal assignment of both the structure and absolute configuration of the natural product.
Chemistry School of Natural and Environmental Sciences Newcastle University Newcastle NE1 7RU U K
Department of Chemistry Universitas Indonesia Depok Jawa Barat 16424 Indonesia
Indicatrix Crystallography Ltd Newcastle University Newcastle NE1 7RU U K
Zobrazit více v PubMed
Khodaei D.; Javanmardi F.; Khaneghah A. M. Curr. Opin. Food Sci. 2021, 39, 36–42. 10.1016/j.cofs.2020.12.012. DOI
Fan K.; Qian S.; Zhang Z.; Huang Q.; Hu Z.; Nie D.; Meng J.; Guo W.; Zhao Z.; Han Z. Crit. Rev. Food Sci. Nutr. 2023, 1–17. 10.1080/10408398.2023.2227260. PubMed DOI
Sun L.; Li R.; Tai B.; Hussain S.; Wang G.; Liu X.; Xing F. ACS Food Sci. Technol. 2023, 3, 231–244. 10.1021/acsfoodscitech.2c00331. DOI
Bills G. F.; Gloer J. B.. Microbiol. Spectr. 2016, 4, 10.1128/microbiolspec.FUNK-0009-2016. PubMed DOI
Niego A. G. T.; Lambert C.; Mortimer P.; Thongklang N.; Rapior S.; Grosse M.; Schrey H.; Charria-Girón E.; Walker A.; Hyde K. D.; Stadler M. Fungal Divers. 2023, 121, 95–137. 10.1007/s13225-023-00520-9. DOI
Rokas A.; Mead M. E.; Steenwyk J. L.; Raja H. A.; Oberlies N. H. Nat. Prod. Rep. 2020, 37, 868–878. 10.1039/C9NP00045C. PubMed DOI PMC
Keller N. P. Nat. Rev. Microbiol. 2019, 17, 167–180. 10.1038/s41579-018-0121-1. PubMed DOI PMC
Hertweck C. Nat. Chem. Biol. 2009, 5, 450–452. 10.1038/nchembio0709-450. PubMed DOI
Brakhage A. A.; Schroeckh V. Fungal Genet. Biol. 2011, 48, 15–22. 10.1016/j.fgb.2010.04.004. PubMed DOI
Knowles S. L.; Raja H. A.; Roberts C. D.; Oberlies N. H. Nat. Prod. Rep. 2022, 39, 1557–1573. 10.1039/D1NP00070E. PubMed DOI PMC
Scherlach K.; Hertweck C. Org. Biomol. Chem. 2009, 7, 1753–1760. 10.1039/b821578b. PubMed DOI
Nützmann H.-W.; Schroeckh V.; Brakhage A. A. Methods Enzymol. 2012, 517, 325–341. 10.1016/B978-0-12-404634-4.00016-4. PubMed DOI
Stroe M. C.; Netzker T.; Scherlach K.; Krüger T.; Hertweck C.; Valiante V.; Brakhage A. A. eLife 2020, 9, e5254110.7554/eLife.52541. PubMed DOI PMC
do Nascimento J. S.; Silva F. M.; Magallanes-Noguera C. A.; Kurina-Sanz M.; dos Santos E. G.; Caldas I. S.; Luiz J. H. H.; Silva E. d. O. Folia Microbiol. 2020, 65, 323–328. 10.1007/s12223-019-00727-x. PubMed DOI
Cowled M. S.; Kalaitzis J. A.; Crombie A.; Chen R.; Sbaraini N.; Lacey E.; Piggott A. M. J. Nat. Prod. 2023, 86, 2398–2406. 10.1021/acs.jnatprod.3c00593. PubMed DOI
Mead M. E.; Raja H. A.; Steenwyk J. L.; Knowles S. L.; Oberlies N. H.; Rokas A.. Microbiol. Resour. Announc. 2019, 8, 10.1128/MRA.00890-19. PubMed DOI PMC
Knowles S. L.; Raja H. A.; Wright A. J.; Lee A. M. L.; Caesar L. K.; Cech N. B.; Mead M. E.; Steenwyk J. L.; Ries L. N. A.; Goldman G. H.; Rokas A.; Oberlies N. H. Front. Microbiol. 2019, 10, 285.10.3389/fmicb.2019.00285. PubMed DOI PMC
Knowles S. L.; Raja H. A.; Isawi I. H.; Flores-Bocanegra L.; Reggio P. H.; Pearce C. J.; Burdette J. E.; Rokas A.; Oberlies N. H. Org. Lett. 2020, 22, 1878–1882. 10.1021/acs.orglett.0c00219. PubMed DOI PMC
Sauri J.; Bermel W.; Buevich A. V.; Sherer E. C.; Joyce L. A.; Sharaf M. H.; Schiff P. L. Jr.; Parella T.; Williamson R. T.; Martin G. E. Angew. Chem., Int. Ed. 2015, 54, 10160–10164. 10.1002/anie.201502540. PubMed DOI
Tyler A. R.; Ragbirsingh R.; McMonagle C. J.; Waddell P. G.; Heaps S. E.; Steed J. W.; Thaw P.; Hall M. J.; Probert M. R. Chem. 2020, 6, 1755–1765. 10.1016/j.chempr.2020.04.009. PubMed DOI PMC
Williamson R. T.; Buevich A. V.; Martin G. E.; Parella T. J. Org. Chem. 2014, 79, 3887–3894. 10.1021/jo500333u. PubMed DOI
Ito S.; Kitamura T.; Arulmozhiraja S.; Manabe K.; Tokiwa H.; Suzuki Y. Org. Lett. 2019, 21, 2777–2781. 10.1021/acs.orglett.9b00731. PubMed DOI
Carletti I.; Long C.; Funel C.; Amade P. J. Nat. Prod. 2003, 66, 25–29. 10.1021/np020208t. PubMed DOI
Tang J. W.; Xu H. C.; Wang W. G.; Hu K.; Zhou Y. F.; Chen R.; Li X. N.; Du X.; Sun H. D.; Puno P. T. J. Nat. Prod. 2019, 82, 735–740. 10.1021/acs.jnatprod.8b00571. PubMed DOI
Lu C.; Wu C.; Ghoreishi D.; Chen W.; Wang L.; Damm W.; Ross G. A.; Dahlgren M. K.; Russell E.; Von Bargen C. D.; Abel R.; Friesner R. A.; Harder E. D. J. Chem. Theory Comput. 2021, 17, 4291–4300. 10.1021/acs.jctc.1c00302. PubMed DOI
Pierens G. K. J. Comput. Chem. 2014, 35, 1388–1394. 10.1002/jcc.23638. PubMed DOI
Metherall J. P.; Carroll R. C.; Coles S. J.; Hall M. J.; Probert M. R. Chem. Soc. Rev. 2023, 52, 1995–2010. 10.1039/D2CS00697A. PubMed DOI
Parker D.; Taylor R. J.; Ferguson G.; Tonge A. Tetrahedron 1986, 42, 617–622. 10.1016/S0040-4020(01)87461-5. DOI
Mattes K. C.; Hutchinson C. R.; Springer J. P.; Clardy J. J. Am. Chem. Soc. 1975, 97, 6270–6271. 10.1021/ja00854a068. DOI
Duchamp D. J.; Wiley P. F.; Hsiung V.; Chidester C. G. J. Org. Chem. 1971, 36, 2670–2673. 10.1021/jo00817a020. PubMed DOI
Gulavita N. K.; De Silva E. D.; Hagadone M. R.; Karuso P.; Scheuer P. J.; Van Duyne G. D.; Clardy J. J. Org. Chem. 1986, 51, 5136–5139. 10.1021/jo00376a015. DOI
Munawar S.; Zahoor A. F.; Hussain S. M.; Ahmad S.; Mansha A.; Parveen B.; Ali K. G.; Irfan A. Heliyon 2024, 10, e2341610.1016/j.heliyon.2023.e23416. PubMed DOI PMC
Guo L.; Jia S.; Diercks C. S.; Yang X.; Alshmimri S. A.; Yaghi O. M. Angew. Chem., Int. Ed. Engl. 2020, 59, 2023–2027. 10.1002/anie.201912579. PubMed DOI
Bai H.; Cui P.; Zang C.; Li S. Bioorg. Med. Chem. Lett. 2019, 29, 126718.10.1016/j.bmcl.2019.126718. PubMed DOI
Antoszczak M.; Maj E.; Napiórkowska A.; Stefańska J.; Augustynowicz-Kopeć E.; Wietrzyk J.; Janczak J.; Brzezinski B.; Huczyński A. Molecules 2014, 19, 19435–19459. 10.3390/molecules191219435. PubMed DOI PMC
Jordan A.; Whymark K. D.; Sydenham J.; Sneddon H. F. Green Chem. 2021, 23, 6405–6413. 10.1039/D1GC02251B. DOI
Spingler B.; Schnidrig S.; Todorova T.; Wild F. CrystEngComm 2012, 14, 751–757. 10.1039/C1CE05624G. DOI
Etter M. C.; MacDonald J. C.; Bernstein J. Acta Crystallogr. B 1990, 46, 256–262. 10.1107/S0108768189012929. PubMed DOI
Palatinus L. Acta Cryst. A 2004, 60, 604–610. 10.1107/S0108767304022433. PubMed DOI
Palatinus L.; Chapuis G. J. Appl. Crystallogr. 2007, 40, 786–790. 10.1107/S0021889807029238. DOI
Mead M. E.; Knowles S. L.; Raja H. A.; Beattie S. R.; Kowalski C. H.; Steenwyk J. L.; Silva L. P.; Chiaratto J.; Ries L. N. A.; Goldman G. H.; Cramer R. A.; Oberlies N. H.; Rokas A.. mSphere 2019, 4, 10.1128/mSphere.00018-19. PubMed DOI PMC
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery J. A. Jr.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J.. Gaussian 16 Rev. C.01; Gaussian, Inc.: Wallingford, CT, 2016.