The Eldgjá eruption: timing, long-range impacts and influence on the Christianisation of Iceland
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
31258223
PubMed Central
PMC6560931
DOI
10.1007/s10584-018-2171-9
PII: 2171
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The Eldgjá lava flood is considered Iceland's largest volcanic eruption of the Common Era. While it is well established that it occurred after the Settlement of Iceland (circa 874 CE), the date of this great event has remained uncertain. This has hampered investigation of the eruption's impacts, if any, on climate and society. Here, we use high-temporal resolution glaciochemical records from Greenland to show that the eruption began in spring 939 CE and continued, at least episodically, until at least autumn 940 CE. Contemporary chronicles identify the spread of a remarkable haze in 939 CE, and tree ring-based reconstructions reveal pronounced northern hemisphere summer cooling in 940 CE, consistent with the eruption's high yield of sulphur to the atmosphere. Consecutive severe winters and privations may also be associated with climatic effects of the volcanic aerosol veil. Iceland's formal conversion to Christianity dates to 999/1000 CE, within two generations or so of the Eldgjá eruption. The end of the pagan pantheon is foretold in Iceland's renowned medieval poem, Vǫluspá ('the prophecy of the seeress'). Several lines of the poem describe dramatic eruptive activity and attendant meteorological effects in an allusion to the fiery terminus of the pagan gods. We suggest that they draw on first-hand experiences of the Eldgjá eruption and that this retrospection of harrowing volcanic events in the poem was intentional, with the purpose of stimulating Iceland's Christianisation over the latter half of the tenth century.
Dendrolab ch Department of Earth Sciences University of Geneva Geneva Switzerland
Department of Geography University of Cambridge Cambridge UK
Departments of History and Biology Georgetown University Washington DC USA
Faculty of English University of Oxford Oxford UK
Geolab UMR6042 CNRS Université Blaise Pascal Clermont Ferrand France
Global Change Research Centre and Masaryk University Brno Czech Republic
Institute for Advanced Study Princeton NJ USA
Institute for Environmental Sciences University of Geneva Geneva Switzerland
Laboratory of Environmental Chemistry Paul Scherrer Institute 5232 Villigen Switzerland
Princeton University Princeton NJ USA
Swiss Federal Research Institute WSL Birmensdorf Switzerland
Zobrazit více v PubMed
Baillie MG, McAneney J. Tree ring effects and ice core acidities clarify the volcanic record of the first millennium. Clim Past. 2015;11(1):105–114. doi: 10.5194/cp-11-105-2015. DOI
Bar Hebraeus (2003) Chronography, trans. E Wallis (Piscataway). 162, 164
Benediktsson J, editor. Íslendingabók. Landnámabók. Íslenzk fornrit I.1–2. Reykjavík: Hið íslenzka fornritafélag; 1968.
Cole-Dai J, Savarino J, Thiemens MH, Lanciki A. Comment on “Climatic impact of the long-lasting Laki eruption: inapplicability of mass-independent sulfur isotope composition measurements” by Schmidt et al. J Geophys Res Atmos. 2014;119:6629–6635. doi: 10.1002/2013JD019869. DOI
Cook E, Seager R, Kushnir Y, Briffa K, Büntgen U, Frank D, Krusic P, Tegel W, van der Schrier G, Andrea-Hayles L, Baillie M, Baittinger C, Bleicher N, Bonde N, Brown D, Carrer M, Cooper R, Cafur K, Dittmar C, Esper J, Griggs C, Gunnarson B, Günter B, Gutierrez HK, Helama S, Herzig F, Heussner K-U, Hofmann J, Janda P, Kontic R, Köse N, Kyncl T, Linderholm H, Manning S, Melvin T, Miles D, Neuwirth B, Nicolussi K, Nola P, Panayotov M, Popa I, Rothe A, Seftigen K, Seim A, Svarva H, Svoboda M, Thun T, Timonen M, Touchan R, Trotsiuk V, Trouet V, Walder F, Wazny T, Wilson R, Zang C. Old World Megadroughts and Pluvials during the Common Era. Sci Adv. 2015;1(10):e1500561. doi: 10.1126/sciadv.1500561. PubMed DOI PMC
D'Arrigo R, Seager R, Smerdon JE, LeGrande AN, Cook ER. The anomalous winter of 1783–1784: was the Laki eruption or an analog of the 2009–2010 winter to blame? Geophys Res Lett. 2011;38:L05706.
Davidson CI, Harrington JR, Stephenson MJ, Small MJ, Boscoe FP, Gandley RE. Seasonal variations in sulfate, nitrate and chloride in the Greenland ice sheet: relation to atmospheric concentrations. Atmos Environ. 1989;23:2483–2493. doi: 10.1016/0004-6981(89)90259-X. DOI
Grattan J, Brayshay M. An amazing and portentous summer: environmental and social responses in Britain to the 1783 eruption of an Iceland volcano. Geogr J. 1995;161:125–134. doi: 10.2307/3059970. DOI
Grønlie S (2006) Íslendingabók. Kristni Saga. The book of the Icelanders. The Story of the Conversion London: 33–74
Grönvold K, Óskarsson N, Johnsen SJ, Clausen HB, Hammer CU, Bond G, Bard E. Ash layers from Iceland in the Greenland GRIP ice core correlated with oceanic and land sediments. Earth Planet Sci Lett. 1995;135:149–155. doi: 10.1016/0012-821X(95)00145-3. DOI
Guillet S, Corona C, Stoffel M, Khodri M, Lavigne F, Ortega P, Eckert N, Sielenou PD, Daux V, Churakova OV, Davi N. Climate response to the Samalas volcanic eruption in 1257 revealed by proxy records. Nat Geosci. 2017;10(2):123–128. doi: 10.1038/ngeo2875. DOI
Hammer CU, Clausen HB, Dansgaard W. Greenland ice sheet evidence of post-glacial volcanism and its climatic impact. Nature. 1980;288:230–235. doi: 10.1038/288230a0. DOI
Hartman S, Ogilvie AEJ, Ingimundarson JK, Dugmore AJ, Hambrech G, McGovern TH (2017) Medieval Iceland, Greenland, and the new human condition: a case study in integrated environmental humanities. Glob Planet Chang. 10.1016/j.gloplacha.2017.04.007
Ibn al-jawzi (1992) al-Muntazam fī ta’rīkh al-umam wa l-mulūk. ‘Atā MA (ed) (Beirut) 1992, XIV:7, 19, 27, 34, 47
Jensen BJ, Pyne-O’Donnell S, Plunkett G, Froese DG, Hughes PD, Sigl M, McConnell JR, Amesbury MJ, Blackwell PG, van den Bogaard C, Buck CE. Transatlantic distribution of the Alaskan White River Ash. Geology. 2014;42:875–878. doi: 10.1130/G35945.1. DOI
Kang JH, et al. Mineral dust and major ion concentrations in snowpit samples from the NEEM site, Greenland. Atmos Environ. 2015;120:137–143. doi: 10.1016/j.atmosenv.2015.08.062. DOI
Larsen G. Holocene eruptions within the Katla volcanic system, South Iceland: characteristics and environmental impact. Jökull. 2000;49:1–28.
Manning JG, Ludlow F, Stine AR, Boos WR, Sigl M, Marlon JR. Volcanic suppression of Nile summer flooding triggers revolt and constrains interstate conflict in ancient Egypt. Nat Commun. 2017;8:art. 900. doi: 10.1038/s41467-017-00957-y. PubMed DOI PMC
McCarthy DP, Breen A. An evaluation of astronomical observations in the Irish annals. Vistas Astron. 1997;41:117–138. doi: 10.1016/S0083-6656(96)00052-9. DOI
Moreland, W., 2017, Explosive activity in flood lava eruptions: a case study of the 10th century Eldgjá eruption, Iceland, PhD dissertation, Faculty of Earth Sciences, University of Iceland, 92 pp
Newfield T. Domesticates, disease and climate in early post-classical Europe: the cattle plague of c.940 and its environmental context. Post-Classical Archaeologies. 2015;5:95–126.
Nordal S 1923 (ed) Vǫluspá, (trans. B. S. Benedikz and J. McKinnell, Durham and St Andrews Medieval Texts 1 (1978)) Reykjavík (1923)
Óladóttir BA, Sigmarsson O, Larsen G, Thordarson T. Katla volcano, Iceland: magma composition, dynamics and eruption frequency as recorded by Holocene tephra layers. Bull Volcanol. 2008;70(4):475–493. doi: 10.1007/s00445-007-0150-5. DOI
Oman L, Robock A, Stenchikov GL, Thordarson T. High-latitude eruptions cast shadow over the African monsoon and the flow of the Nile. Geophys Res Lett. 2006;33:L18711. doi: 10.1029/2006GL027665. DOI
Oppenheimer C, Wacker L, Xu J, Galván JD, Stoffel M, Orchard A, Guillet S, Corona C, Sigl M, Di Cosmo N, Hajdas I, Pan B, Breuker R, Schneider L, Esper J, Fei J, Hammond JOS, Büntgen U. Multi-proxy dating of the ‘Millennium Eruption’ of Changbaishan and the Eldgjá lava floods. Quat Sci Rev. 2017;158:164–171. doi: 10.1016/j.quascirev.2016.12.024. DOI
Orchard A (trans.) (2011) The Elder Edda: myths, gods and heroes from the viking world. Penguin, London, 384 pp
Popper W (1951) The Cairo Nilometer (University of California Press), p 209
Rhodes RH, Yang X, Wolff EW, McConnell JR, Frey MM. Sea ice as a source of sea salt aerosol to Greenland ice cores: a model-based study. Atmos Chem Phys. 2017;17:9417–9433. doi: 10.5194/acp-17-9417-2017. DOI
Schmid MM, Dugmore AJ, Vésteinsson O, Newton AJ (2016) Tephra isochrons and chronologies of colonisation. Quat Geochron. 10.1016/j.quageo.2016.08.002
Schmidt A, Thordarson T, Oman L, Robock A, Self S. Climatic impact of the long-lasting 1783 Laki eruption: inapplicability of mass-independent sulfur isotopic composition measurements. J Geophys Res. 2012;117:D23116.
Sigl M, et al. A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years. J Geophys Res Atmos. 2013;118:1151–1169. doi: 10.1029/2012JD018603. DOI
Sigl M, Winstrup M, McConnell JR, Welten KC, Plunkett G, Ludlow F, Büntgen U, Caffee M, Chellman N, Dahl-Jensen D, Fischer H. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature. 2015;523:543–549. doi: 10.1038/nature14565. PubMed DOI
Skylitzes J (2010) A synopsis of Byzantine history, 811–1057, trans. J Wortley (Cambridge). 2010, XIV. 6, p 254
Steingrímsson J, (trans. Kunz K) (1998) Fires of the earth: the Laki eruption 1783–1784. Nordic Volcanological Institute and University of Iceland Press, Reykjavik
Stoffel M, et al. Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1,500 years. Nat Geosci. 2015;8:784–788. doi: 10.1038/ngeo2526. DOI
Stothers RB. Far reach of the tenth-century Eldgjá eruption, Iceland. Clim Chang. 1998;39:715–726. doi: 10.1023/A:1005323724072. DOI
Sun C, et al. Ash from Changbaishan Millennium eruption recorded in Greenland ice: implications for determining the eruption’s timing and impact. Geophys Res Lett. 2014;41(2):694–701. doi: 10.1002/2013GL058642. DOI
Ta’rīkh Jazīrat Şiqilliya [Cronica di Cambridge] (1880) trans. M Amari Biblioteca Arabo-Sicula I, Rome, p 277–293
Thorarinsson S. Tephra studies. Netherlands: Springer; 1981. Tephra studies and tephrochronology: a historical review with special reference to Iceland; pp. 1–12.
Thordarson T, Self S. The Laki (Skaftár Fires) and Grímsvötn eruptions in 1783–1785. Bull Volcanol. 1993;55(4):233–263. doi: 10.1007/BF00624353. DOI
Thordarson T, Self S, Oskarsson N, Hulsebosch T. Sulfur, chlorine, and fluorine degassing and atmospheric loading by the 1783–1784 AD Laki (Skaftár Fires) eruption in Iceland. Bull Volcanol. 1996;58(2–3):205–225. doi: 10.1007/s004450050136. DOI
Thordarson T, Miller DJ, Larsen G, Self S, Sigurdsson H. New estimates of sulfur degassing and atmospheric mass-loading by the 934 AD Eldgjá eruption, Iceland. J Volcanol Geotherm Res. 2001;108(1):33–54. doi: 10.1016/S0377-0273(00)00277-8. DOI
Vinther BM, et al. A synchronized dating of three Greenland ice cores throughout the Holocene. J Geophys Res. 2006;111:D13102. doi: 10.1029/2005JD006921. DOI
Witham CS, Oppenheimer C. Mortality in England during the 1783–4 Laki Craters eruption. Bull Volcanol. 2004;67:15–26. doi: 10.1007/s00445-004-0357-7. DOI
Zielinski GA, Germani MS, Larsen G, Baillie MG, Whitlow S, Twickler MS, Taylor K. Evidence of the Eldgjá (Iceland) eruption in the GISP2 Greenland ice core: relationship to eruption processes and climatic conditions in the tenth century. The Holocene. 1995;5(2):129–140. doi: 10.1177/095968369500500201. DOI
Zusätze Röchell’s zu Frühern Chronisten (1856) (ed) J Janssen Die Geschichtsquellen des Bisthums Münster III: Die Münsterischen Chroniken von Röchell, Stevermann und Corfey (Munster)