ValTrendsDB: bringing Protein Data Bank validation information closer to the user
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31263870
PubMed Central
PMC6954638
DOI
10.1093/bioinformatics/btz532
PII: 5526874
Knihovny.cz E-zdroje
- MeSH
- databáze proteinů MeSH
- internet MeSH
- proteiny MeSH
- software * MeSH
- uživatelské rozhraní počítače MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny MeSH
SUMMARY: Structures in PDB tend to contain errors. This is a very serious issue for authors that rely on such potentially problematic data. The community of structural biologists develops validation methods as countermeasures, which are also included in the PDB deposition system. But how are these validation efforts influencing the structure quality of subsequently published data? Which quality aspects are improving, and which remain problematic? We developed ValTrendsDB, a database that provides the results of an extensive exploratory analysis of relationships between quality criteria, size and metadata of biomacromolecules. Key input data are sourced from PDB. The discovered trends are presented via precomputed information-rich plots. ValTrendsDB also supports the visualization of a set of user-defined structures on top of general quality trends. Therefore, ValTrendsDB enables users to see the quality of structures published by selected author, laboratory or journal, discover quality outliers, etc. ValTrendsDB is updated weekly. AVAILABILITY AND IMPLEMENTATION: Freely accessible at http://ncbr.muni.cz/ValTrendsDB. The web interface was implemented in JavaScript. The database was implemented in C++. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
CEITEC Central European Institute of Technology Masaryk University Brno Czech Republic
Institute of Mathematics and Statistics Faculty of Science Masaryk University Brno Czech Republic
National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Bruno I.J. et al. (2004) Retrieval of crystallographically-derived molecular geometry information. J. Chem. Inf. Comput. Sci., 44, 2133–2144. PubMed
Burley S.K. et al. (2018) Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res., 47, D520–D528. PubMed PMC
Chen V.B. et al. (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr., 66, 12–21. PubMed PMC
Gore S. et al. (2017) Validation of structures in the Protein Data Bank. Structure, 25, 1916–1927. PubMed PMC
Rupp B. (2012) Detection and analysis of unusual features in the structural model and structure-factor data of a birch pollen allergen. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 68, 366–376. PubMed PMC
Sehnal D. et al. (2015) ValidatorDB: database of up-to-date validation results for ligands and non-standard residues from the Protein Data Bank. Nucleic Acids Res. Database Issue, 43, D369–D375. PubMed PMC
Westbrook J.D. et al. (2015) The chemical component dictionary: complete descriptions of constituent molecules in experimentally determined 3D macromolecules in the Protein Data Bank. Bioinformatics, 31, 1274–1278. PubMed PMC