Characterization of survival and stress resistance in S. cerevisiae mutants affected in peroxisome inheritance and proliferation, Δinp1 and Δpex11
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
31273644
DOI
10.1007/s12223-019-00724-0
PII: 10.1007/s12223-019-00724-0
Knihovny.cz E-resources
- MeSH
- Gene Deletion MeSH
- Membrane Proteins genetics metabolism MeSH
- Microbial Viability MeSH
- Peroxins genetics metabolism MeSH
- Peroxisomes genetics metabolism MeSH
- Cell Proliferation MeSH
- Reactive Oxygen Species metabolism MeSH
- Saccharomyces cerevisiae Proteins genetics metabolism MeSH
- Saccharomyces cerevisiae genetics growth & development metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- INP1 protein, S cerevisiae MeSH Browser
- Membrane Proteins MeSH
- Peroxins MeSH
- PEX11 protein, S cerevisiae MeSH Browser
- Reactive Oxygen Species MeSH
- Saccharomyces cerevisiae Proteins MeSH
Baker's yeast is a valuable model system for the study of biological aging as it can be utilized for the measurement of replicative and chronological life spans in response to interventions. Whereas replicative aging in Saccharomyces cerevisiae mirrors dividing mammalian cells, chronological aging is seen in non-dividing cells. Aging is strongly influenced by the cellular organelles, especially by mitochondria which house essential functions like oxidative phosphorylation. Additionally, peroxisomes were shown to modulate the aging process, mainly by their turnover of reactive oxygen species. There is a fundamental interest in understanding how mitochondria and peroxisomes contribute to cellular aging. This work analyzes chronological aging in yeast mutants that are affected in peroxisomal proliferation and inheritance. Deletion of INP1 (retention of peroxisomes in the mother cell) or PEX11 (division of peroxisomes) leads to clearly reduced life spans compared to the wild-type control under conditions which depend on peroxisomal metabolism. Δinp1 cells are long-lived in contrast to the wild type and Δpex11 when assayed under conditions that not necessitate peroxisome function. Neither treatment affects the index of respiratory capacity, indicating fully functional mitochondria. Evaluation of stress resistances reveals that Δinp1 has significantly higher resistance to the apoptosis elicitor acetic acid. Old Δpex11 cells from an oleate culture are more susceptible to hydrogen peroxide treatment compared to Δinp1 and the wild type. Finally, aged cells are hyper-sensitive to heat shock treatment in contrast to young cells.
See more in PubMed
Aging Cell. 2013 Oct;12(5):784-93 PubMed
EMBO J. 2011 Jan 5;30(1):5-16 PubMed
Biochim Biophys Acta. 2016 May;1863(5):922-33 PubMed
J Cell Biol. 1995 Apr;129(2):345-55 PubMed
Biochim Biophys Acta Biomembr. 2018 Jun;1860(6):1292-1300 PubMed
FEMS Yeast Res. 2016 Jun;16(4): PubMed
J Mol Biol. 2015 Jun 5;427(11):2072-87 PubMed
Biol Open. 2015 Apr 24;4(6):710-21 PubMed
Nat Genet. 1996 Dec;14(4):450-6 PubMed
J Physiol. 2003 Oct 15;552(Pt 2):335-44 PubMed
Yeast. 1998 Jan 30;14(2):115-32 PubMed
Proc Natl Acad Sci U S A. 2015 May 19;112(20):6377-82 PubMed
J Cell Sci. 2018 Feb 7;131(3): PubMed
Subcell Biochem. 2012;57:55-78 PubMed
Cell Cycle. 2015;14(11):1698-703 PubMed
Aging (Albany NY). 2010 Jul;2(7):393-414 PubMed
Biogerontology. 2018 Oct;19(5):303-324 PubMed
FEBS Lett. 2008 Aug 20;582(19):2882-6 PubMed
Arch Microbiol. 1976 Dec 1;111(1-2):137-44 PubMed
Genes Dev. 2007 Oct 1;21(19):2410-21 PubMed
Folia Microbiol (Praha). 2007;52(5):479-83 PubMed
Microsc Res Tech. 2003 Jun 1;61(2):139-50 PubMed
Nature. 2010 Mar 25;464(7288):513-9 PubMed
Traffic. 2011 Mar;12(3):252-9 PubMed
Front Oncol. 2012 May 21;2:50 PubMed
Science. 2014 Jun 20;344(6190):1389-92 PubMed
Dev Cell. 2006 May;10(5):587-600 PubMed
J Cell Biol. 1995 Feb;128(4):509-23 PubMed
Mol Microbiol. 1999 Jul;33(2):274-83 PubMed
J Cell Biol. 2009 Nov 16;187(4):463-71 PubMed
FEBS J. 2009 Mar;276(5):1429-39 PubMed
Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13348-53 PubMed
Curr Opin Microbiol. 2014 Dec;22:1-7 PubMed
Mol Microbiol. 2017 Jun;104(5):851-868 PubMed
Mol Biol Cell. 2002 Aug;13(8):2598-606 PubMed
J Cell Biol. 2005 Jun 6;169(5):765-75 PubMed
Elife. 2015 Nov 06;4: PubMed
EMBO J. 2013 Sep 11;32(18):2439-53 PubMed