Genome-wide association study revealed novel loci which aggravate asymptomatic hyperuricaemia into gout
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, metaanalýza, práce podpořená grantem
PubMed
31289104
PubMed Central
PMC6788923
DOI
10.1136/annrheumdis-2019-215521
PII: S0003-4967(24)02166-6
Knihovny.cz E-zdroje
- Klíčová slova
- asymptomatic hyperuricemia, genome-wide association study, gout, individually-tailored preemptive medicine, uric acid,
- MeSH
- ABC transportér z rodiny G, člen 2 genetika MeSH
- asymptomatické nemoci MeSH
- celogenomová asociační studie MeSH
- dna (nemoc) krev genetika MeSH
- dospělí MeSH
- genetické lokusy genetika MeSH
- genotypizační techniky MeSH
- hyperurikemie genetika MeSH
- kontaktiny genetika MeSH
- kyselina močová krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikro RNA genetika MeSH
- mitochondriální aldehyddehydrogenasa genetika MeSH
- nádorové proteiny genetika MeSH
- proteiny usnadňující transport glukosy genetika MeSH
- rizikové faktory MeSH
- zinkové prsty genetika MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ABC transportér z rodiny G, člen 2 MeSH
- ABCG2 protein, human MeSH Prohlížeč
- ALDH2 protein, human MeSH Prohlížeč
- CNTN5 protein, human MeSH Prohlížeč
- kontaktiny MeSH
- kyselina močová MeSH
- mikro RNA MeSH
- MIRN302A microRNA, human MeSH Prohlížeč
- mitochondriální aldehyddehydrogenasa MeSH
- nádorové proteiny MeSH
- proteiny usnadňující transport glukosy MeSH
- SLC2A9 protein, human MeSH Prohlížeč
OBJECTIVE: The first ever genome-wide association study (GWAS) of clinically defined gout cases and asymptomatic hyperuricaemia (AHUA) controls was performed to identify novel gout loci that aggravate AHUA into gout. METHODS: We carried out a GWAS of 945 clinically defined gout cases and 1003 AHUA controls followed by 2 replication studies. In total, 2860 gout cases and 3149 AHUA controls (all Japanese men) were analysed. We also compared the ORs for each locus in the present GWAS (gout vs AHUA) with those in the previous GWAS (gout vs normouricaemia). RESULTS: This new approach enabled us to identify two novel gout loci (rs7927466 of CNTN5 and rs9952962 of MIR302F) and one suggestive locus (rs12980365 of ZNF724) at the genome-wide significance level (p<5.0×10-8). The present study also identified the loci of ABCG2, ALDH2 and SLC2A9. One of them, rs671 of ALDH2, was identified as a gout locus by GWAS for the first time. Comparing ORs for each locus in the present versus the previous GWAS revealed three 'gout vs AHUA GWAS'-specific loci (CNTN5, MIR302F and ZNF724) to be clearly associated with mechanisms of gout development which distinctly differ from the known gout risk loci that basically elevate serum uric acid level. CONCLUSIONS: This meta-analysis is the first to reveal the loci associated with crystal-induced inflammation, the last step in gout development that aggravates AHUA into gout. Our findings should help to elucidate the molecular mechanisms of gout development and assist the prevention of gout attacks in high-risk AHUA individuals.
Akasaka Central Clinic Tokyo Japan
Center for Genomic Medicine Kyoto University Graduate School of Medicine Kyoto Japan
Department of Biochemisty University of Otago Dunedin New Zealand
Department of Defense Medicine National Defense Medical College Tokorozawa Saitama Japan
Department of General Medicine National Defense Medical College Tokorozawa Saitama Japan
Department of Genome Science School of Dentistry Aichi Gakuin University Nagoya Aichi Japan
Department of Geriatric Medicine Graduate School of Medical Sciences Kyushu University Fukuoka Japan
Department of Medical Biochemistry Kurume University School of Medicine Kurume Fukuoka Japan
Department of Pathophysiology Tokyo University of Pharmacy and Life Sciences Hachioji Tokyo Japan
Department of Pharmacy the University of Tokyo Hospital Tokyo Japan
Department of Preventive Medicine Faculty of Medicine Saga University Saga Japan
Department of Preventive Medicine Nagoya University Graduate School of Medicine Nagoya Aichi Japan
Department of Statistical Genetics Osaka University Graduate School of Medicine Suita Osaka Japan
Department of Surgery National Defense Medical College Tokorozawa Saitama Japan
Department of Urology National Defense Medical College Tokorozawa Saitama Japan
Division of Inflammation Biology Institute for Enzyme Research Tokushima University Tokushima Japan
Institute of Rheumatology Prague Czech Republic
Kyoto Industrial Health Association Kyoto Japan
Laboratory for Mathematics National Defense Medical College Tokorozawa Saitama Japan
Midorigaoka Hospital Takatsuki Osaka Japan
RIKEN Center for Integrative Medical Sciences Yokohama Kanagawa Japan
Zobrazit více v PubMed
Roddy E, Mallen CD, Doherty M. Gout. BMJ 2013;347:f5648 10.1136/bmj.f5648 PubMed DOI
Ichida K, Matsuo H, Takada T, et al. . Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat Commun 2012;3:764 10.1038/ncomms1756 PubMed DOI PMC
Matsuo H, Tsunoda T, Ooyama K, et al. . Hyperuricemia in acute gastroenteritis is caused by decreased urate excretion via ABCG2. Sci Rep 2016;6:31003 10.1038/srep31003 PubMed DOI PMC
Matsuo H, Takada T, Ichida K, et al. . Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Sci Transl Med 2009;1:5ra11 10.1126/scitranslmed.3000237 PubMed DOI
Woodward OM, Köttgen A, Coresh J, et al. . Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci U S A 2009;106:10338–42. 10.1073/pnas.0901249106 PubMed DOI PMC
Matsuo H, Ichida K, Takada T, et al. . Common dysfunctional variants in ABCG2 are a major cause of early-onset gout. Sci Rep 2013;3:2014 10.1038/srep02014 PubMed DOI PMC
Williams PT. Effects of diet, physical activity and performance, and body weight on incident gout in ostensibly healthy, vigorously active men. Am J Clin Nutr 2008;87:1480–7. 10.1093/ajcn/87.5.1480 PubMed DOI PMC
Choi HK, Atkinson K, Karlson EW, et al. . Alcohol intake and risk of incident gout in men: a prospective study. Lancet 2004;363:1277–81. 10.1016/S0140-6736(04)16000-5 PubMed DOI
Mikuls TR, Farrar JT, Bilker WB, et al. . Gout epidemiology: results from the UK general practice research database, 1990-1999. Ann Rheum Dis 2005;64:267–72. 10.1136/ard.2004.024091 PubMed DOI PMC
Nakayama A, Matsuo H, Nakaoka H, et al. . Common dysfunctional variants of ABCG2 have stronger impact on hyperuricemia progression than typical environmental risk factors. Sci Rep 2014;4:5227 10.1038/srep05227 PubMed DOI PMC
Dalbeth N, Merriman TR, Stamp LK. Gout. Lancet 2016;388:2039–52. 10.1016/S0140-6736(16)00346-9 PubMed DOI
Li S, Sanna S, Maschio A, et al. . The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet 2007;3:e194 10.1371/journal.pgen.0030194 PubMed DOI PMC
Döring A, Gieger C, Mehta D, et al. . SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet 2008;40:430–6. 10.1038/ng.107 PubMed DOI
Vitart V, Rudan I, Hayward C, et al. . SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet 2008;40:437–42. 10.1038/ng.106 PubMed DOI
McArdle PF, Parsa A, Chang Y-PC, et al. . Association of a common nonsynonymous variant in GLUT9 with serum uric acid levels in old order Amish. Arthritis Rheum 2008;58:2874–81. 10.1002/art.23752 PubMed DOI PMC
Dehghan A, Köttgen A, Yang Q, et al. . Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 2008;372:1953–61. 10.1016/S0140-6736(08)61343-4 PubMed DOI PMC
Kolz M, Johnson T, Sanna S, et al. . Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet 2009;5:e1000504 10.1371/journal.pgen.1000504 PubMed DOI PMC
Kamatani Y, Matsuda K, Okada Y, et al. . Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat Genet 2010;42:210–5. 10.1038/ng.531 PubMed DOI
Yang Q, Köttgen A, Dehghan A, et al. . Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ Cardiovasc Genet 2010;3:523–30. 10.1161/CIRCGENETICS.109.934455 PubMed DOI PMC
Tin A, Woodward OM, Kao WHL, et al. . Genome-wide association study for serum urate concentrations and gout among African Americans identifies genomic risk loci and a novel URAT1 loss-of-function allele. Hum Mol Genet 2011;20:4056–68. 10.1093/hmg/ddr307 PubMed DOI PMC
Sulem P, Gudbjartsson DF, Walters GB, et al. . Identification of low-frequency variants associated with gout and serum uric acid levels. Nat Genet 2011;43:1127–30. 10.1038/ng.972 PubMed DOI
Köttgen A, Albrecht E, Teumer A, et al. . Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat Genet 2013;45:145–54. 10.1038/ng.2500 PubMed DOI PMC
Okada Y, Sim X, Go MJ, et al. . Meta-analysis identifies multiple loci associated with kidney function-related traits in east Asian populations. Nat Genet 2012;44:904–9. 10.1038/ng.2352 PubMed DOI PMC
Matsuo H, Yamamoto K, Nakaoka H, et al. . Genome-wide association study of clinically defined gout identifies multiple risk loci and its association with clinical subtypes. Ann Rheum Dis 2016;75:652–9. 10.1136/annrheumdis-2014-206191 PubMed DOI PMC
Nakayama A, Nakaoka H, Yamamoto K, et al. . GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes. Ann Rheum Dis 2017;76:869–77. 10.1136/annrheumdis-2016-209632 PubMed DOI PMC
Li C, Li Z, Liu S, et al. . Genome-wide association analysis identifies three new risk loci for gout arthritis in Han Chinese. Nat Commun 2015;6:7041 10.1038/ncomms8041 PubMed DOI PMC
Higashino T, Takada T, Nakaoka H, et al. . Multiple common and rare variants of ABCG2 cause gout. RMD Open 2017;3:e000464 10.1136/rmdopen-2017-000464 PubMed DOI PMC
Matsuo H, Chiba T, Nagamori S, et al. . Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet 2008;83:744–51. 10.1016/j.ajhg.2008.11.001 PubMed DOI PMC
Enomoto A, Kimura H, Chairoungdua A, et al. . Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 2002;417:447–52. 10.1038/nature742 PubMed DOI
Sakiyama M, Matsuo H, Shimizu S, et al. . The effects of URAT1/SLC22A12 nonfunctional variants, R90H and W258X, on serum uric acid levels and gout/hyperuricemia progression. Sci Rep 2016;6:20148 10.1038/srep20148 PubMed DOI PMC
Chiba T, Matsuo H, Kawamura Y, et al. . NPT1/SLC17A1 is a renal urate exporter in humans and its common gain-of-function variant decreases the risk of renal underexcretion gout. Arthritis Rheumatol 2015;67:281–7. 10.1002/art.38884 PubMed DOI
Wallace SL, Robinson H, Masi AT, et al. . Preliminary criteria for the classification of the acute arthritis of primary gout. Arthritis Rheum 1977;20:895–900. 10.1002/art.1780200320 PubMed DOI
Nakamura T, Shi D, Tzetis M, et al. . Meta-analysis of association between the ASPN D-repeat and osteoarthritis. Hum Mol Genet 2007;16:1676–81. 10.1093/hmg/ddm115 PubMed DOI
Hamajima N, J-MICC Study Group . The Japan Multi-Institutional Collaborative Cohort Study (J-MICC study) to detect gene-environment interactions for cancer. Asian Pac J Cancer Prev 2007;8:317–23. PubMed
Wakai K, Hamajima N, Okada R, et al. . Profile of participants and genotype distributions of 108 polymorphisms in a cross-sectional study of associations of genotypes with lifestyle and clinical factors: a project in the Japan Multi-Institutional Collaborative Cohort (J-MICC) Study. J Epidemiol 2011;21:223–35. 10.2188/jea.JE20100139 PubMed DOI PMC
Purcell S, Neale B, Todd-Brown K, et al. . PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81:559–75. 10.1086/519795 PubMed DOI PMC
Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet 2006;2:e190 10.1371/journal.pgen.0020190 PubMed DOI PMC
Price AL, Patterson NJ, Plenge RM, et al. . Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006;38:904–9. 10.1038/ng1847 PubMed DOI
Sakiyama M, Matsuo H, Akashi A, et al. . Independent effects of ADH1B and ALDH2 common dysfunctional variants on gout risk. Sci Rep 2017;7:2500 10.1038/s41598-017-02528-z PubMed DOI PMC
Nakaoka H, Inoue I. Meta-analysis of genetic association studies: methodologies, between-study heterogeneity and winner's curse. J Hum Genet 2009;54:615–23. 10.1038/jhg.2009.95 PubMed DOI
Cochran WG. The combination of estimates from different experiments. Biometrics 1954;10:101–29. 10.2307/3001666 DOI
Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002;21:1539–58. 10.1002/sim.1186 PubMed DOI
Higgins JPT, Thompson SG, Deeks JJ, et al. . Measuring inconsistency in meta-analyses. BMJ 2003;327:557–60. 10.1136/bmj.327.7414.557 PubMed DOI PMC
DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177–88. 10.1016/0197-2456(86)90046-2 PubMed DOI
R Development Core Team R: A Language and Environment for Statistical Computing. Vienna: R. Foundation for Statistical Computing, 2006.
Sakiyama M, Matsuo H, Nakaoka H, et al. . Identification of rs671, a common variant of ALDH2, as a gout susceptibility locus. Sci Rep 2016;6:25360 10.1038/srep25360 PubMed DOI PMC
Nakatochi M, Kanai M, Nakayama A, et al. . Genome-wide meta-analysis identifies multiple novel loci associated with serum uric acid levels in Japanese individuals. Commun Biol 2019;2:115 10.1038/s42003-019-0339-0 PubMed DOI PMC
Ogawa J, Kaneko H, Masuda T, et al. . Novel neural adhesion molecules in the Contactin/F3 subgroup of the immunoglobulin superfamily: isolation and characterization of cDNAs from rat brain. Neurosci Lett 1996;218:173–6. 10.1016/S0304-3940(96)13156-6 PubMed DOI
Shimoda Y, Watanabe K. Contactins: emerging key roles in the development and function of the nervous system. Cell Adh Migr 2009;3:64–70. 10.4161/cam.3.1.7764 PubMed DOI PMC
Poot M. A candidate gene association study further corroborates involvement of contactin genes in autism. Mol Syndromol 2014;5:229–35. 10.1159/000362891 PubMed DOI PMC
van Daalen E, Kemner C, Verbeek NE, et al. . Social responsiveness Scale-aided analysis of the clinical impact of copy number variations in autism. Neurogenetics 2011;12:315–23. 10.1007/s10048-011-0297-2 PubMed DOI PMC
Lionel AC, Crosbie J, Barbosa N, et al. . Rare copy number variation discovery and cross-disorder comparisons identify risk genes for ADHD. Sci Transl Med 2011;3:95ra75 10.1126/scitranslmed.3002464 PubMed DOI
Nakabayashi K, Komaki G, Tajima A, et al. . Identification of novel candidate loci for anorexia nervosa at 1q41 and 11q22 in Japanese by a genome-wide association analysis with microsatellite markers. J Hum Genet 2009;54:531–7. 10.1038/jhg.2009.74 PubMed DOI
Jung S-H, Yim S-H, Hu H-J, et al. . Genome-wide copy number variation analysis identifies deletion variants associated with ankylosing spondylitis. Arthritis Rheumatol 2014;66:2103–12. 10.1002/art.38650 PubMed DOI
Ortiz-Fernández L, Carmona F-D, Montes-Cano M-A, et al. . Genetic analysis with the immunochip platform in Behçet disease. Identification of residues associated in the HLA class I region and new susceptibility loci. PLoS One 2016;11:e0161305 10.1371/journal.pone.0161305 PubMed DOI PMC
Umiċeviċ Mirkov M, Cui J, Vermeulen SH, et al. . Genome-wide association analysis of anti-TNF drug response in patients with rheumatoid arthritis. Ann Rheum Dis 2013;72:1375–81. 10.1136/annrheumdis-2012-202405 PubMed DOI PMC
Thomas D, Gazouli M, Karantanos T, et al. . Association of rs1568885, rs1813443 and rs4411591 polymorphisms with anti-TNF medication response in Greek patients with Crohn's disease. World J Gastroenterol 2014;20:3609–14. 10.3748/wjg.v20.i13.3609 PubMed DOI PMC
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993;75:843–54. 10.1016/0092-8674(93)90529-Y PubMed DOI
Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010;11:597–610. 10.1038/nrg2843 PubMed DOI
Yao Y, Suo A-L, Li Z-F, et al. . MicroRNA profiling of human gastric cancer. Mol Med Rep 2009;2:963–70. 10.3892/mmr_00000199 PubMed DOI
Hummel R, Wang T, Watson DI, et al. . Chemotherapy-induced modification of microRNA expression in esophageal cancer. Oncol Rep 2011;26:1011–7. 10.3892/or.2011.1381 PubMed DOI
Ceribelli A, Yao B, Dominguez-Gutierrez PR, et al. . MicroRNAs in systemic rheumatic diseases. Arthritis Res Ther 2011;13:229 10.1186/ar3377 PubMed DOI PMC
Duroux-Richard I, Jorgensen C, Apparailly F. What do microRNAs mean for rheumatoid arthritis? Arthritis Rheum 2012;64:11–20. 10.1002/art.30651 PubMed DOI
Zhang Q-B, Qing Y-F, Yin C-C, et al. . Mice with miR-146a deficiency develop severe gouty arthritis via dysregulation of TRAF 6, IRAK 1 and NALP3 inflammasome. Arthritis Res Ther 2018;20:45 10.1186/s13075-018-1546-7 PubMed DOI PMC
Zhou W, Wang Y, Wu R, et al. . MicroRNA-488 and -920 regulate the production of proinflammatory cytokines in acute gouty arthritis. Arthritis Res Ther 2017;19:203 10.1186/s13075-017-1418-6 PubMed DOI PMC
Papanagnou P, Stivarou T, Tsironi M. The role of miRNAs in common inflammatory arthropathies: osteoarthritis and gouty arthritis. Biomolecules 2016;6:44 10.3390/biom6040044 PubMed DOI PMC
Circulating microRNA alternations in primary hyperuricemia and gout