The Signal Transduction Protein PII Controls Ammonium, Nitrate and Urea Uptake in Cyanobacteria

. 2019 ; 10 () : 1428. [epub] 20190625

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31293555

PII signal transduction proteins are widely spread among all domains of life where they regulate a multitude of carbon and nitrogen metabolism related processes. Non-diazotrophic cyanobacteria can utilize a high variety of organic and inorganic nitrogen sources. In recent years, several physiological studies indicated an involvement of the cyanobacterial PII protein in regulation of ammonium, nitrate/nitrite, and cyanate uptake. However, direct interaction of PII has not been demonstrated so far. In this study, we used biochemical, molecular genetic and physiological approaches to demonstrate that PII regulates all relevant nitrogen uptake systems in Synechocystis sp. strain PCC 6803: PII controls ammonium uptake by interacting with the Amt1 ammonium permease, probably similar to the known regulation of E. coli ammonium permease AmtB by the PII homolog GlnK. We could further clarify that PII mediates the ammonium- and dark-induced inhibition of nitrate uptake by interacting with the NrtC and NrtD subunits of the nitrate/nitrite transporter NrtABCD. We further identified the ABC-type urea transporter UrtABCDE as novel PII target. PII interacts with the UrtE subunit without involving the standard interaction surface of PII interactions. The deregulation of urea uptake in a PII deletion mutant causes ammonium excretion when urea is provided as nitrogen source. Furthermore, the urea hydrolyzing urease enzyme complex appears to be coupled to urea uptake. Overall, this study underlines the great importance of the PII signal transduction protein in the regulation of nitrogen utilization in cyanobacteria.

Zobrazit více v PubMed

Baker K. M., Gobler C. J., Collier J. L. (2009). Urease gene sequences from algae and heterotrophic bacteria in axenic and nonaxenic phytoplankton cultures. J. Phycol. 45 625–634. 10.1111/j.1529-8817.2009.00680.x PubMed DOI

Battchikova N., Vainonen J. P., Vorontsova N., Keranen M., Carmel D., Aro E. M. (2010). Dynamic changes in the proteome of Synechocystis 6803 in response to CO2 limitation revealed by quantitative proteomics. J. Proteome Res. 9 5896–5912. 10.1021/pr100651w PubMed DOI

Battesti A., Bouveret E. (2012). The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli. Methods 58 325–334. 10.1016/j.ymeth.2012.07.018 PubMed DOI

Burillo S., Luque I., Fuentes I., Contreras A. (2004). Interactions between the nitrogen signal transduction protein PII and N-acetyl glutamate kinase in organisms that perform oxygenic photosynthesis. J. Bacteriol. 186 3346–3354. 10.1128/jb.186.11.3346-3354.2004 PubMed DOI PMC

Caldovic L., Tuchman M. (2003). N-acetylglutamate and its changing role through evolution. Biochem. J. 372(Pt 2) 279–290. 10.1042/BJ20030002 PubMed DOI PMC

Chang Y., Takatani N., Aichi M., Maeda S.-I., Omata T. (2013). Evaluation of the effects of PII deficiency and the toxicity of PipX on growth characteristics of the PII-less mutant of the cyanobacterium Synechococcus elongatus. Plant Cell Physiol. 54 1504–1514. 10.1093/pcp/pct092 PubMed DOI

Cheah E., Carr P. D., Suffolk P. M., Vasudevan S. G., Dixon N. E., Ollis D. L. (1994). Structure of the Escherichia coli signal transducing protein PII. Structure 2 981–990. PubMed

Chellamuthu V. R., Alva V., Forchhammer K. (2013). From cyanobacteria to plants: conservation of PII functions during plastid evolution. Planta 237 451–462. 10.1007/s00425-012-1801-0 PubMed DOI

Chidgey J. W., Linhartova M., Komenda J., Jackson P. J., Dickman M. J., Canniffe D. P., et al. (2014). A cyanobacterial chlorophyll synthase-HliD complex associates with the Ycf39 protein and the YidC/Alb3 insertase. Plant Cell 26 1267–1279. 10.1105/tpc.114.124495 PubMed DOI PMC

Conroy M. J., Durand A., Lupo D., Li X. D., Bullough P. A., Winkler F. K., et al. (2007). The crystal structure of the Escherichia coli AmtB-GlnK complex reveals how GlnK regulates the ammonia channel. Proc. Natl. Acad. Sci. U.S.A. 104 1213–1218. 10.1073/pnas.0610348104 PubMed DOI PMC

Cox J., Hein M. Y., Luber C. A., Paron I., Nagaraj N., Mann M. (2014). Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics 13 2513–2526. 10.1074/mcp.M113.031591 PubMed DOI PMC

Cox J., Mann M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26 1367–1372. 10.1038/nbt.1511 PubMed DOI

Dai G. Z., Qiu B. S., Forchhammer K. (2014). Ammonium tolerance in the cyanobacterium Synechocystis sp. strain PCC 6803 and the role of the psbA multigene family. Plant Cell Environ. 37 840–851. 10.1111/pce.12202 PubMed DOI

Drath M., Kloft N., Batschauer A., Marin K., Novak J., Forchhammer K. (2008). Ammonia triggers photodamage of photosystem II in the cyanobacterium Synechocystis sp strain PCC 6803. Plant Physiol. 147 206–215. 10.1104/pp.108.117218 PubMed DOI PMC

Espinosa J., Forchhammer K., Burillo S., Contreras A. (2006). Interaction network in cyanobacterial nitrogen regulation: PipX, a protein that interacts in a 2-oxoglutarate dependent manner with PII and NtcA. Mol. Microbiol. 61 457–469. 10.1111/j.1365-2958.2006.05231.x PubMed DOI

Espinosa J., Forchhammer K., Contreras A. (2007). Role of the Synechococcus PCC 7942 nitrogen regulator protein PipX in NtcA-controlled processes. Microbiology 153 711–718. PubMed

Espinosa J., Labella J. I., Cantos R., Contreras A. (2018). Energy drives the dynamic localization of cyanobacterial nitrogen regulators during diurnal cycles. Environ. Microbiol. 20 1240–1252. 10.1111/1462-2920.14071 PubMed DOI

Espinosa J., Rodriguez-Mateos F., Salinas P., Lanza V. F., Dixon R., de la Cruz F., et al. (2014). PipX, the coactivator of NtcA, is a global regulator in cyanobacteria. Proc. Natl. Acad. Sci. U.S.A. 111 E2423–E2430. 10.1073/pnas.1404097111 PubMed DOI PMC

Esteves-Ferreira A. A., Inaba M., Fort A., Araujo W. L., Sulpice R. (2018). Nitrogen metabolism in cyanobacteria: metabolic and molecular control, growth consequences and biotechnological applications. Crit. Rev. Microbiol. 44 541–560. 10.1080/1040841X.2018.1446902 PubMed DOI

Fiddler R. N. (1977). Collaborative study of modified AOAC method of analysis for nitrite in meat and meat products. J. Assoc. Off. Anal. Chem. 60 594–599. PubMed

Flores E., Herrero A. (1994). “Assimilatory nitrogen metabolism and its regulation,” in The Molecular Biology of Cyanobacteria ed. Bryant D. A. (Dordrecht: Springer; ) 487–517.

Fokina O., Chellamuthu V. R., Forchhammer K., Zeth K. (2010a). Mechanism of 2-oxoglutarate signaling by the Synechococcus elongatus PII signal transduction protein. Proc. Natl. Acad. Sci. U.S.A. 107 19760–19765. 10.1073/pnas.1007653107 PubMed DOI PMC

Fokina O., Chellamuthu V. R., Zeth K., Forchhammer K. (2010b). A novel signal transduction protein PII variant from Synechococcus elongatus PCC 7942 indicates a two-step process for NAGK-PII complex formation. J. Mol. Biol. 399 410–421. 10.1016/j.jmb.2010.04.018 PubMed DOI

Forcada-Nadal A., Forchhammer K., Rubio V. (2014). SPR analysis of promoter binding of Synechocystis PCC6803 transcription factors NtcA and CRP suggests cross-talk and sheds light on regulation by effector molecules. FEBS Lett. 588 2270–2276. 10.1016/j.febslet.2014.05.010 PubMed DOI

Forcada-Nadal A., Llacer J. L., Contreras A., Marco-Marin C., Rubio V. (2018). The PII-NAGK-PipX-NtcA regulatory axis of cyanobacteria: a tale of changing partners, allosteric effectors and non-covalent interactions. Front. Mol. Biosci. 5:91. 10.3389/fmolb.2018.00091 PubMed DOI PMC

Forchhammer K. (2004). Global carbon/nitrogen control by PII signal transduction in cyanobacteria: from signals to targets. FEMS Microbiol. Rev. 28 319–333. 10.1016/j.femsre.2003.11.001 PubMed DOI

Forchhammer K. (2008). PII signal transducers: novel functional and structural insights. Trends Microbiol. 16 65–72. 10.1016/j.tim.2007.11.004 PubMed DOI

Forchhammer K., Hedler A. (1997). Phosphoprotein PII from cyanobacteria-analysis of functional conservation with the PII signal-transduction protein from Escherichia coli. Eur. J. Biochem. 244 869–875. PubMed

Forchhammer K., IrmLer A., Kloft N., Ruppert U. (2004). PII signalling in unicellular cyanobacteria: analysis of redox-signals and energy charge. Physiol. Plant. 120 51–56. 10.1111/j.0031-9317.2004.0218.x PubMed DOI

Forchhammer K., Luddecke J. (2016). Sensory properties of the PII signalling protein family. FEBS J. 283 425–437. 10.1111/febs.13584 PubMed DOI

Forchhammer K., Schwarz R. (2018). Nitrogen chlorosis in unicellular cyanobacteria - a developmental program for surviving nitrogen deprivation. Environ. Microbiol. 21 1173–1184. 10.1111/1462-2920.14447 PubMed DOI

Forchhammer K., Tandeau de Marsac N. (1995). Phosphorylation of the PII protein (glnB gene product) in the cyanobacterium Synechococcus sp. strain PCC 7942: analysis of in vitro kinase activity. J. Bacteriol. 177 5812–5817. PubMed PMC

Gibson D. G., Young L., Chuang R. Y., Venter J. C., Hutchison C. A., III, Smith H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6 343–345. 10.1038/nmeth.1318 PubMed DOI

Giner-Lamia J., Robles-Rengel R., Hernández-Prieto M. A., Muro-Pastor M. I., Florencio F. J., Futschik M. E. (2017). Identification of the direct regulon of NtcA during early acclimation to nitrogen starvation in the cyanobacterium Synechocystis sp. PCC 6803. Nucleic Acids Res. 45 11800–11820. 10.1093/nar/gkx860 PubMed DOI PMC

Gruswitz F., O’Connell J., Stroud R. M. (2007). Inhibitory complex of the transmembrane ammonia channel, AmtB, and the cytosolic regulatory protein, GlnK, at 1.96 A. Proc. Natl. Acad. Sci. U.S.A. 104 42–47. 10.1073/pnas.0609796104 PubMed DOI PMC

Hahn A., Schleiff E. (2014). “The cell envelope,” in The Cell Biology of Cyanobacteria eds Flores E., Herrero A. (Norfolk: Caister Academic Press; ) 29–87.

Hauf W., Schmid K., Gerhardt E. C., Huergo L. F., Forchhammer K. (2016). Interaction of the nitrogen regulatory protein GlnB PII with biotin carboxyl carrier protein (BCCP) controls acetyl-CoA levels in the cyanobacterium Synechocystis sp. PCC 6803. Front. Microbiol. 7:1700. 10.3389/fmicb.2016.01700 PubMed DOI PMC

Heinrich A., Maheswaran M., Ruppert U., Forchhammer K. (2004). The Synechococcus elongatus PII signal transduction protein controls arginine synthesis by complex formation with N-acetyl-L-glutamate kinase. Mol. Microbiol. 52 1303–1314. 10.1111/j.1365-2958.2004.04058.x PubMed DOI

Herrero A., Flores E. (2008). The Cyanobacteria: Molecular Biology, Genomics, and Evolution. Norfolk: Caister Academic Press.

Hisbergues M., Jeanjean R., Joset F., de Marsac N. T., Bedu S. (1999). Protein PII regulates both inorganic carbon and nitrate uptake and is modified by a redox signal in Synechocystis sp PCC 6803. FEBS Lett. 463 216–220. PubMed

Hollingshead S., Kopečná J., Jackson P. J., Canniffe D. P., Davison P. A., Dickman M. J., et al. (2012). Conserved chloroplast open-reading frame ycf54 is required for activity of the magnesium protoporphyrin monomethylester oxidative cyclase in Synechocystis PCC 6803. J. Biol. Chem. 287 27823–27833. 10.1074/jbc.M112.352526 PubMed DOI PMC

Huergo L. F., Pedrosa F. O., Muller-Santos M., Chubatsu L. S., Monteiro R. A., Merrick M., et al. (2012). PII signal transduction proteins: pivotal players in post-translational control of nitrogenase activity. Microbiology 158(Pt 1) 176–190. 10.1099/mic.0.049783-0 PubMed DOI

Jiang P., Peliska J. A., Ninfa A. J. (1998). Enzymological characterization of the signal-transducing uridylyltransferase/uridylyl-removing enzyme (EC 2.7.7.59) of Escherichia coli and its interaction with the PII protein. Biochemistry 37 12782–12794. 10.1021/bi980667m PubMed DOI

Karimova G., Ullmann A., Ladant D. (2001). Protein-protein interaction between Bacillus stearothermophilus tyrosyl-tRNA synthetase subdomains revealed by a bacterial two-hybrid system. J. Mol. Microbiol. Biotechnol. 3 73–82. PubMed

Kloft N., Forchhammer K. (2005). Signal transduction protein PII phosphatase PphA is required for light-dependent control of nitrate utilization in Synechocystis sp. strain PCC 6803. J. Bacteriol. 187 6683–6690. 10.1128/JB.187.19.6683-6690.2005 PubMed DOI PMC

Kobayashi M., Rodriguez R., Lara C., Omata T. (1997). Involvement of the C-terminal domain of an ATP-binding subunit in the regulation of the ABC-type nitrate/nitrite transporter of the cyanobacterium Synechococcus sp. PCC 7942. J. Biol. Chem. 272 27197–27201. 10.1074/jbc.272.43.27197 PubMed DOI

Kobayashi M., Takatani N., Tanigawa M., Omata T. (2005). Posttranslational regulation of nitrate assimilation in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 187 498–506. 10.1128/JB.187.2.498-506.2005 PubMed DOI PMC

Koropatkin N. M., Pakrasi H. B., Smith T. J. (2006). Atomic structure of a nitrate-binding protein crucial for photosynthetic productivity. Proc. Natl. Acad. Sci. U.S.A. 103 9820–9825. 10.1073/pnas.0602517103 PubMed DOI PMC

Lee H. M., Flores E., Forchhammer K., Herrero A., de Marsac N. T. (2000). Phosphorylation of the signal transducer PII protein and an additional effector are required for the PII mediated regulation of nitrate and nitrite uptake in the cyanobacterium Synechococcus sp PCC 7942. Eur. J. Biochem. 267 591–600. 10.1046/j.1432-1327.2000.01043.x PubMed DOI

Lee H. M., Flores E., Herrero A., Houmard J., de Marsac N. T. (1998). A role for the signal transduction protein PII in the control of nitrate/nitrite uptake in a cyanobacterium. FEBS Lett. 427 291–295. PubMed

Llacer J. L., Contreras A., Forchhammer K., Marco-Marin C., Gil-Ortiz F., Maldonado R., et al. (2007). The crystal structure of the complex of PII and acetylglutamate kinase reveals how PII controls the storage of nitrogen as arginine. Proc. Natl. Acad. Sci. U.S.A. 104 17644–17649. 10.1073/pnas.0705987104 PubMed DOI PMC

Llacer J. L., Espinosa J., Castells M. A., Contreras A., Forchhammer K., Rubio V. (2010). Structural basis for the regulation of NtcA-dependent transcription by proteins PipX and PII. Proc. Natl. Acad. Sci. U.S.A. 107 15397–15402. 10.1073/pnas.1007015107 PubMed DOI PMC

Luque I., Flores E., Herrero A. (1994). Nitrate and nitrite transport in the cyanobacterium Synechococcus sp PCC 7942 are mediated by the same permease. Biochim. Biophys. Acta Bioenerg. 1184 296–298.

Luque I., Forchhammer K. (2008). “Nitrogen assimilation and C/N balance sensing,” in The Cyanobacteria. Molecular Biology, Genomics and Evolution eds Herrero A., Flores E. (Norfolk: Caister Academic Press; ) 335–382.

Maeda S. I., Omata T. (1997). Substrate-binding lipoprotein of the cyanobacterium Synechococcus sp strain PCC 7942 involved in the transport of nitrate and nitrite. J. Biol. Chem. 272 3036–3041. 10.1074/jbc.272.5.3036 PubMed DOI

Maheswaran M., Urbanke C., Forchhammer K. (2004). Complex formation and catalytic activation by the PII signaling protein of N-acetyl-L-glutamate kinase from Synechococcus elongatus strain PCC 7942. J. Biol. Chem. 279 55202–55210. 10.1074/jbc.M410971200 PubMed DOI

Maheswaran M., Ziegler K., Lockau W., Hagemann M., Forchhammer K. (2006). PII-regulated arginine synthesis controls accumulation of cyanophycin in Synechocystis sp strain PCC 6803. J. Bacteriol. 188 2730–2734. 10.1128/Jb.188.7.2730-2734.2006 PubMed DOI PMC

Maier S., Schleberger P., Lu W., Wacker T., Pfluger T., Litz C., et al. (2011). Mechanism of disruption of the Amt-GlnK complex by PII-mediated sensing of 2-oxoglutarate. PLoS One 6:e26327. 10.1371/journal.pone.0026327 PubMed DOI PMC

Manzano C., Candau P., Gomez-Moreno C., Relimpio A. M., Losada M. (1976). Ferredoxin-dependent photosynthetic reduction of nitrate and nitrite by particles of Anacystis nidulans. Mol. Cell. Biochem. 10 161–169. PubMed

Marques S., Merida A., Candau P., Florencio F. J. (1992). Light-mediated regulation of glutamine-synthetase activity in the unicellular cyanobacterium Synechococcus sp PCC6301. Planta 187 247–253. PubMed

Merrick M. (2014). Post-translational modification of PII signal transduction proteins. Front. Microbiol. 5:763 10.3389/fmicb.2014.00763 PubMed DOI PMC

Mobley H. L. T., Hausinger R. P. (1989). Microbial ureases - significance, regulation and molecular characterization. Microbiol. Rev. 53 85–108. PubMed PMC

Montesinos M. L., Muro-Pastor A. M., Herrero A., Flores E. (1998). Ammonium/methylammonium permeases of a cyanobacterium. Identification and analysis of three nitrogen-regulated amt genes in Synechocystis sp. PCC 6803. J. Biol. Chem. 273 31463–31470. PubMed

Muro-Pastor M. I., Reyes J. C., Florencio F. J. (2001). Cyanobacteria perceive nitrogen status by sensing intracellular 2-oxoglutarate levels. J. Biol. Chem. 276 38320–38328. PubMed

Muro-Pastor M. I., Reyes J. C., Florencio F. J. (2005). Ammonium assimilation in cyanobacteria. Photosynth. Res. 83 135–150. PubMed

Nakao M., Okamoto S., Kohara M., Fujishiro T., Fujisawa T., Sato S., et al. (2010). CyanoBase: the cyanobacteria genome database update 2010. Nucleic Acids Res. 38 D379–D381. 10.1093/nar/gkp915 PubMed DOI PMC

Ohashi Y., Shi W., Takatani N., Aichi M., Maeda S., Watanabe S., et al. (2011). Regulation of nitrate assimilation in cyanobacteria. J. Exp. Bot. 62 1411–1424. 10.1093/jxb/erq427 PubMed DOI

Olsen J. V., de Godoy L. M. F., Li G. Q., Macek B., Mortensen P., Pesch R., et al. (2005). Parts per million mass accuracy on an orbitrap mass spectrometer via lock mass injection into a C-trap. Mol. Cell. Proteomics 4 2010–2021. 10.1074/mcp.T500030-MCP200 PubMed DOI

Omata T., Andriesse X., Hirano A. (1993). Identification and characterization of a gene-cluster involved in nitrate transport in the cyanobacterium Synechococcus sp PCC 7942. Mol. Gen. Genet. 236 193–202. 10.1007/Bf00277112 PubMed DOI

Radchenko M., Merrick M. (2011). The role of effector molecules in signal transduction by PII proteins. Biochem. Soc. Trans. 39 189–194. 10.1042/BST0390189 PubMed DOI

Radchenko M. V., Thornton J., Merrick M. (2014). Association and dissociation of the GlnK-AmtB complex in response to cellular nitrogen status can occur in the absence of GlnK post-translational modification. Front. Microbiol. 5:731. 10.3389/fmicb.2014.00731 PubMed DOI PMC

Rappsilber J., Mann M., Ishihama Y. (2007). Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2 1896–1906. 10.1038/nprot.2007.261 PubMed DOI

Rees A. P., Woodward E. M. S., Joint I. (2006). Concentrations and uptake of nitrate and ammonium in the Atlantic ocean between 60 degrees N and 50 degrees S. Deep Sea Res. Part II Top. Stud. Oceanogr. 53 1649–1665. 10.1016/j.dsr2.2006.05.008 DOI

Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stanier R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111 1–61.

Romero J. M., Lara C., Guerrero M. G. (1985). Dependence of nitrate utilization upon active CO2 fixation in Anacystis nidulans - a regulatory aspect of the interaction between photosynthetic carbon and nitrogen-metabolism. Arch. Biochem. Biophys. 237 396–401. PubMed

Ruppert U., IrmLer A., Kloft N., Forchhammer K. (2002). The novel protein phosphatase PphA from Synechocystis PCC 6803 controls dephosphorylation of the signalling protein PII. Mol. Microbiol. 44 855–864. PubMed

Sakamoto T., Inoue-Sakamoto K., Bryant D. A. (1999). A novel nitrate/nitrite permease in the marine cyanobacterium Synechococcus sp. strain PCC 7002. J. Bacteriol. 181 7363–7372. PubMed PMC

Sato S., Shimoda Y., Muraki A., Kohara M., Nakamura Y., Tabata S. (2007). A large-scale protein–protein interaction analysis in Synechocystis sp. PCC6803. DNA Res. 14 207–216. 10.1093/dnares/dsm021 PubMed DOI PMC

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9 676–682. 10.1038/Nmeth.2019 PubMed DOI PMC

Schwanhausser B., Busse D., Li N., Dittmar G., Schuchhardt J., Wolf J., et al. (2011). Global quantification of mammalian gene expression control. Nature 473 337–342. 10.1038/nature10098 PubMed DOI

Selim K. A., Haase F., Hartmann M. D., Hagemann M., Forchhammer K. (2018). PII-like signaling protein SbtB links cAMP sensing with cyanobacterial inorganic carbon response. Proc. Natl. Acad. Sci. U.S.A. 115 E4861–E4869. 10.1073/pnas.1803790115 PubMed DOI PMC

Solomon C. M., Collier J. L., Berg G. M., Glibert P. M. (2010). Role of urea in microbial metabolism in aquatic systems: a biochemical and molecular review. Aquat. Microb. Ecol. 59 67–88. 10.3354/ame01390 DOI

Soo R. M., Hemp J., Parks D. H., Fischer W. W., Hugenholtz P. (2017). On the origins of oxygenic photosynthesis and aerobic respiration in cyanobacteria. Science 355 1436–1439. 10.1126/science.aal3794 PubMed DOI

Spät P., Macek B., Forchhammer K. (2015). Phosphoproteome of the cyanobacterium Synechocystis sp PCC 6803 and its dynamics during nitrogen starvation. Front. Microbiol. 6:248. 10.3389/fmicb.2015.00248 PubMed DOI PMC

Sweetlove L. J., Fernie A. R. (2018). The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation. Nat. Commun. 9:2136. 10.1038/s41467-018-04543-8 PubMed DOI PMC

Valladares A., Montesinos M. L., Herrero A., Flores E. (2002). An ABC-type, high-affinity urea permease identified in cyanobacteria. Mol. Microbiol. 43 703–715. 10.1046/j.1365-2958.2002.02778.x PubMed DOI

Vegapalas M. A., Flores E., Herrero A. (1992). NtcA, a global nitrogen regulator from the cyanobacterium Synechococcus that belongs to the Crp family of bacterial regulators. Mol. Microbiol. 6 1853–1859. 10.1111/j.1365-2958.1992.tb01357.x PubMed DOI

Vitousek P. M., Howarth R. W. (1991). Nitrogen limitation on land and in the sea - how can it occur. Biogeochemistry 13 87–115.

Vizcaino J. A., Cote R. G., Csordas A., Dianes J. A., Fabregat A., Foster J. M., et al. (2013). The proteomics identifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 41 D1063–D1069. 10.1093/nar/gks1262 PubMed DOI PMC

Vogel A. I., Furniss B. S., Vogel A. I. (1989). Vogel’s Textbook of Practical Organic Chemistry. New York, NY: Longman Scientific & Technical.

Watzer B., Engelbrecht A., Hauf W., Stahl M., Maldener I., Forchhammer K. (2015). Metabolic pathway engineering using the central signal processor PII. Microb. Cell Fact. 14:192. 10.1186/s12934-015-0384-4 PubMed DOI PMC

Watzer B., Forchhammer K. (2018). Cyanophycin synthesis optimizes nitrogen utilization in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Appl. Environ. Microbiol. 84:e01298-18. 10.1128/AEM.01298-18 PubMed DOI PMC

Whitton B. A. (2012). Ecology of Cyanobacteria II: Their Diversity in Space and Time. New York, NY: Springer.

Wirén N. V., Merrick M. (2004). “Regulation and function of ammonium carriers in bacteria, fungi, and plants,” in Molecular Mechanisms Controlling Transmembrane Transport eds Boles E., Krämer R. (Berlin: Springer; ) 95–120.

Xu Y. B., Carr P. D., Clancy P., Garcia-Dominguez M., Forchhammer K., Florencio F., et al. (2003). The structures of the PII proteins from the cyanobacteria Synechococcus sp PCC 7942 and Synechocystis sp. PCC 6803. Acta Crystallogr. D Biol. Crystallogr. 59(Pt 12) 2183–2190. 10.1107/S0907444903019589 PubMed DOI

Zeth K., Fokina O., Forchhammer K. (2014). Structural basis and target-specific modulation of ADP sensing by the Synechococcus elongatus PII signaling protein. J. Biol. Chem. 289 8960–8972. 10.1074/jbc.M113.536557 PubMed DOI PMC

Zhao M. X., Jiang Y. L., Xu B. Y., Chen Y., Zhang C. C., Zhou C. Z. (2010). Crystal structure of the cyanobacterial signal transduction protein PII in complex with PipX. J. Mol. Biol. 402 552–559. 10.1016/j.jmb.2010.08.006 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...