The Signal Transduction Protein PII Controls Ammonium, Nitrate and Urea Uptake in Cyanobacteria
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31293555
PubMed Central
PMC6603209
DOI
10.3389/fmicb.2019.01428
Knihovny.cz E-zdroje
- Klíčová slova
- ABC transporters, GlnB, PII signaling protein, ammonium uptake, cyanobacteria, nitrate uptake, nitrogen regulation, urea uptake,
- Publikační typ
- časopisecké články MeSH
PII signal transduction proteins are widely spread among all domains of life where they regulate a multitude of carbon and nitrogen metabolism related processes. Non-diazotrophic cyanobacteria can utilize a high variety of organic and inorganic nitrogen sources. In recent years, several physiological studies indicated an involvement of the cyanobacterial PII protein in regulation of ammonium, nitrate/nitrite, and cyanate uptake. However, direct interaction of PII has not been demonstrated so far. In this study, we used biochemical, molecular genetic and physiological approaches to demonstrate that PII regulates all relevant nitrogen uptake systems in Synechocystis sp. strain PCC 6803: PII controls ammonium uptake by interacting with the Amt1 ammonium permease, probably similar to the known regulation of E. coli ammonium permease AmtB by the PII homolog GlnK. We could further clarify that PII mediates the ammonium- and dark-induced inhibition of nitrate uptake by interacting with the NrtC and NrtD subunits of the nitrate/nitrite transporter NrtABCD. We further identified the ABC-type urea transporter UrtABCDE as novel PII target. PII interacts with the UrtE subunit without involving the standard interaction surface of PII interactions. The deregulation of urea uptake in a PII deletion mutant causes ammonium excretion when urea is provided as nitrogen source. Furthermore, the urea hydrolyzing urease enzyme complex appears to be coupled to urea uptake. Overall, this study underlines the great importance of the PII signal transduction protein in the regulation of nitrogen utilization in cyanobacteria.
Zobrazit více v PubMed
Baker K. M., Gobler C. J., Collier J. L. (2009). Urease gene sequences from algae and heterotrophic bacteria in axenic and nonaxenic phytoplankton cultures. PubMed DOI
Battchikova N., Vainonen J. P., Vorontsova N., Keranen M., Carmel D., Aro E. M. (2010). Dynamic changes in the proteome of PubMed DOI
Battesti A., Bouveret E. (2012). The bacterial two-hybrid system based on adenylate cyclase reconstitution in PubMed DOI
Burillo S., Luque I., Fuentes I., Contreras A. (2004). Interactions between the nitrogen signal transduction protein PII and PubMed DOI PMC
Caldovic L., Tuchman M. (2003). N-acetylglutamate and its changing role through evolution. PubMed DOI PMC
Chang Y., Takatani N., Aichi M., Maeda S.-I., Omata T. (2013). Evaluation of the effects of PII deficiency and the toxicity of PipX on growth characteristics of the PII-less mutant of the cyanobacterium PubMed DOI
Cheah E., Carr P. D., Suffolk P. M., Vasudevan S. G., Dixon N. E., Ollis D. L. (1994). Structure of the PubMed
Chellamuthu V. R., Alva V., Forchhammer K. (2013). From cyanobacteria to plants: conservation of PII functions during plastid evolution. PubMed DOI
Chidgey J. W., Linhartova M., Komenda J., Jackson P. J., Dickman M. J., Canniffe D. P., et al. (2014). A cyanobacterial chlorophyll synthase-HliD complex associates with the Ycf39 protein and the YidC/Alb3 insertase. PubMed DOI PMC
Conroy M. J., Durand A., Lupo D., Li X. D., Bullough P. A., Winkler F. K., et al. (2007). The crystal structure of the PubMed DOI PMC
Cox J., Hein M. Y., Luber C. A., Paron I., Nagaraj N., Mann M. (2014). Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. PubMed DOI PMC
Cox J., Mann M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. PubMed DOI
Dai G. Z., Qiu B. S., Forchhammer K. (2014). Ammonium tolerance in the cyanobacterium PubMed DOI
Drath M., Kloft N., Batschauer A., Marin K., Novak J., Forchhammer K. (2008). Ammonia triggers photodamage of photosystem II in the cyanobacterium PubMed DOI PMC
Espinosa J., Forchhammer K., Burillo S., Contreras A. (2006). Interaction network in cyanobacterial nitrogen regulation: PipX, a protein that interacts in a 2-oxoglutarate dependent manner with PII and NtcA. PubMed DOI
Espinosa J., Forchhammer K., Contreras A. (2007). Role of the PubMed
Espinosa J., Labella J. I., Cantos R., Contreras A. (2018). Energy drives the dynamic localization of cyanobacterial nitrogen regulators during diurnal cycles. PubMed DOI
Espinosa J., Rodriguez-Mateos F., Salinas P., Lanza V. F., Dixon R., de la Cruz F., et al. (2014). PipX, the coactivator of NtcA, is a global regulator in cyanobacteria. PubMed DOI PMC
Esteves-Ferreira A. A., Inaba M., Fort A., Araujo W. L., Sulpice R. (2018). Nitrogen metabolism in cyanobacteria: metabolic and molecular control, growth consequences and biotechnological applications. PubMed DOI
Fiddler R. N. (1977). Collaborative study of modified AOAC method of analysis for nitrite in meat and meat products. PubMed
Flores E., Herrero A. (1994). “Assimilatory nitrogen metabolism and its regulation,” in
Fokina O., Chellamuthu V. R., Forchhammer K., Zeth K. (2010a). Mechanism of 2-oxoglutarate signaling by the PubMed DOI PMC
Fokina O., Chellamuthu V. R., Zeth K., Forchhammer K. (2010b). A novel signal transduction protein PII variant from PubMed DOI
Forcada-Nadal A., Forchhammer K., Rubio V. (2014). SPR analysis of promoter binding of PubMed DOI
Forcada-Nadal A., Llacer J. L., Contreras A., Marco-Marin C., Rubio V. (2018). The PII-NAGK-PipX-NtcA regulatory axis of cyanobacteria: a tale of changing partners, allosteric effectors and non-covalent interactions. PubMed DOI PMC
Forchhammer K. (2004). Global carbon/nitrogen control by PII signal transduction in cyanobacteria: from signals to targets. PubMed DOI
Forchhammer K. (2008). PII signal transducers: novel functional and structural insights. PubMed DOI
Forchhammer K., Hedler A. (1997). Phosphoprotein PII from cyanobacteria-analysis of functional conservation with the PII signal-transduction protein from PubMed
Forchhammer K., IrmLer A., Kloft N., Ruppert U. (2004). PII signalling in unicellular cyanobacteria: analysis of redox-signals and energy charge. PubMed DOI
Forchhammer K., Luddecke J. (2016). Sensory properties of the PII signalling protein family. PubMed DOI
Forchhammer K., Schwarz R. (2018). Nitrogen chlorosis in unicellular cyanobacteria - a developmental program for surviving nitrogen deprivation. PubMed DOI
Forchhammer K., Tandeau de Marsac N. (1995). Phosphorylation of the PII protein (glnB gene product) in the cyanobacterium PubMed PMC
Gibson D. G., Young L., Chuang R. Y., Venter J. C., Hutchison C. A., III, Smith H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. PubMed DOI
Giner-Lamia J., Robles-Rengel R., Hernández-Prieto M. A., Muro-Pastor M. I., Florencio F. J., Futschik M. E. (2017). Identification of the direct regulon of NtcA during early acclimation to nitrogen starvation in the cyanobacterium PubMed DOI PMC
Gruswitz F., O’Connell J., Stroud R. M. (2007). Inhibitory complex of the transmembrane ammonia channel, AmtB, and the cytosolic regulatory protein, GlnK, at 1.96 A. PubMed DOI PMC
Hahn A., Schleiff E. (2014). “The cell envelope,” in
Hauf W., Schmid K., Gerhardt E. C., Huergo L. F., Forchhammer K. (2016). Interaction of the nitrogen regulatory protein GlnB PII with biotin carboxyl carrier protein (BCCP) controls acetyl-CoA levels in the cyanobacterium PubMed DOI PMC
Heinrich A., Maheswaran M., Ruppert U., Forchhammer K. (2004). The PubMed DOI
Herrero A., Flores E. (2008).
Hisbergues M., Jeanjean R., Joset F., de Marsac N. T., Bedu S. (1999). Protein PII regulates both inorganic carbon and nitrate uptake and is modified by a redox signal in PubMed
Hollingshead S., Kopečná J., Jackson P. J., Canniffe D. P., Davison P. A., Dickman M. J., et al. (2012). Conserved chloroplast open-reading frame ycf54 is required for activity of the magnesium protoporphyrin monomethylester oxidative cyclase in PubMed DOI PMC
Huergo L. F., Pedrosa F. O., Muller-Santos M., Chubatsu L. S., Monteiro R. A., Merrick M., et al. (2012). PII signal transduction proteins: pivotal players in post-translational control of nitrogenase activity. PubMed DOI
Jiang P., Peliska J. A., Ninfa A. J. (1998). Enzymological characterization of the signal-transducing uridylyltransferase/uridylyl-removing enzyme (EC 2.7.7.59) of PubMed DOI
Karimova G., Ullmann A., Ladant D. (2001). Protein-protein interaction between PubMed
Kloft N., Forchhammer K. (2005). Signal transduction protein PII phosphatase PphA is required for light-dependent control of nitrate utilization in PubMed DOI PMC
Kobayashi M., Rodriguez R., Lara C., Omata T. (1997). Involvement of the C-terminal domain of an ATP-binding subunit in the regulation of the ABC-type nitrate/nitrite transporter of the cyanobacterium PubMed DOI
Kobayashi M., Takatani N., Tanigawa M., Omata T. (2005). Posttranslational regulation of nitrate assimilation in the cyanobacterium PubMed DOI PMC
Koropatkin N. M., Pakrasi H. B., Smith T. J. (2006). Atomic structure of a nitrate-binding protein crucial for photosynthetic productivity. PubMed DOI PMC
Lee H. M., Flores E., Forchhammer K., Herrero A., de Marsac N. T. (2000). Phosphorylation of the signal transducer PII protein and an additional effector are required for the PII mediated regulation of nitrate and nitrite uptake in the cyanobacterium PubMed DOI
Lee H. M., Flores E., Herrero A., Houmard J., de Marsac N. T. (1998). A role for the signal transduction protein PII in the control of nitrate/nitrite uptake in a cyanobacterium. PubMed
Llacer J. L., Contreras A., Forchhammer K., Marco-Marin C., Gil-Ortiz F., Maldonado R., et al. (2007). The crystal structure of the complex of PII and acetylglutamate kinase reveals how PII controls the storage of nitrogen as arginine. PubMed DOI PMC
Llacer J. L., Espinosa J., Castells M. A., Contreras A., Forchhammer K., Rubio V. (2010). Structural basis for the regulation of NtcA-dependent transcription by proteins PipX and PII. PubMed DOI PMC
Luque I., Flores E., Herrero A. (1994). Nitrate and nitrite transport in the cyanobacterium
Luque I., Forchhammer K. (2008). “Nitrogen assimilation and C/N balance sensing,” in
Maeda S. I., Omata T. (1997). Substrate-binding lipoprotein of the cyanobacterium PubMed DOI
Maheswaran M., Urbanke C., Forchhammer K. (2004). Complex formation and catalytic activation by the PII signaling protein of N-acetyl-L-glutamate kinase from PubMed DOI
Maheswaran M., Ziegler K., Lockau W., Hagemann M., Forchhammer K. (2006). PII-regulated arginine synthesis controls accumulation of cyanophycin in PubMed DOI PMC
Maier S., Schleberger P., Lu W., Wacker T., Pfluger T., Litz C., et al. (2011). Mechanism of disruption of the Amt-GlnK complex by PII-mediated sensing of 2-oxoglutarate. PubMed DOI PMC
Manzano C., Candau P., Gomez-Moreno C., Relimpio A. M., Losada M. (1976). Ferredoxin-dependent photosynthetic reduction of nitrate and nitrite by particles of PubMed
Marques S., Merida A., Candau P., Florencio F. J. (1992). Light-mediated regulation of glutamine-synthetase activity in the unicellular cyanobacterium PubMed
Merrick M. (2014). Post-translational modification of PII signal transduction proteins. PubMed DOI PMC
Mobley H. L. T., Hausinger R. P. (1989). Microbial ureases - significance, regulation and molecular characterization. PubMed PMC
Montesinos M. L., Muro-Pastor A. M., Herrero A., Flores E. (1998). Ammonium/methylammonium permeases of a cyanobacterium. Identification and analysis of three nitrogen-regulated amt genes in PubMed
Muro-Pastor M. I., Reyes J. C., Florencio F. J. (2001). Cyanobacteria perceive nitrogen status by sensing intracellular 2-oxoglutarate levels. PubMed
Muro-Pastor M. I., Reyes J. C., Florencio F. J. (2005). Ammonium assimilation in cyanobacteria. PubMed
Nakao M., Okamoto S., Kohara M., Fujishiro T., Fujisawa T., Sato S., et al. (2010). CyanoBase: the cyanobacteria genome database update 2010. PubMed DOI PMC
Ohashi Y., Shi W., Takatani N., Aichi M., Maeda S., Watanabe S., et al. (2011). Regulation of nitrate assimilation in cyanobacteria. PubMed DOI
Olsen J. V., de Godoy L. M. F., Li G. Q., Macek B., Mortensen P., Pesch R., et al. (2005). Parts per million mass accuracy on an orbitrap mass spectrometer via lock mass injection into a C-trap. PubMed DOI
Omata T., Andriesse X., Hirano A. (1993). Identification and characterization of a gene-cluster involved in nitrate transport in the cyanobacterium PubMed DOI
Radchenko M., Merrick M. (2011). The role of effector molecules in signal transduction by PII proteins. PubMed DOI
Radchenko M. V., Thornton J., Merrick M. (2014). Association and dissociation of the GlnK-AmtB complex in response to cellular nitrogen status can occur in the absence of GlnK post-translational modification. PubMed DOI PMC
Rappsilber J., Mann M., Ishihama Y. (2007). Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. PubMed DOI
Rees A. P., Woodward E. M. S., Joint I. (2006). Concentrations and uptake of nitrate and ammonium in the Atlantic ocean between 60 degrees N and 50 degrees S. DOI
Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stanier R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria.
Romero J. M., Lara C., Guerrero M. G. (1985). Dependence of nitrate utilization upon active CO PubMed
Ruppert U., IrmLer A., Kloft N., Forchhammer K. (2002). The novel protein phosphatase PphA from PubMed
Sakamoto T., Inoue-Sakamoto K., Bryant D. A. (1999). A novel nitrate/nitrite permease in the marine cyanobacterium PubMed PMC
Sato S., Shimoda Y., Muraki A., Kohara M., Nakamura Y., Tabata S. (2007). A large-scale protein–protein interaction analysis in PubMed DOI PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. (2012). Fiji: an open-source platform for biological-image analysis. PubMed DOI PMC
Schwanhausser B., Busse D., Li N., Dittmar G., Schuchhardt J., Wolf J., et al. (2011). Global quantification of mammalian gene expression control. PubMed DOI
Selim K. A., Haase F., Hartmann M. D., Hagemann M., Forchhammer K. (2018). PII-like signaling protein SbtB links cAMP sensing with cyanobacterial inorganic carbon response. PubMed DOI PMC
Solomon C. M., Collier J. L., Berg G. M., Glibert P. M. (2010). Role of urea in microbial metabolism in aquatic systems: a biochemical and molecular review. DOI
Soo R. M., Hemp J., Parks D. H., Fischer W. W., Hugenholtz P. (2017). On the origins of oxygenic photosynthesis and aerobic respiration in cyanobacteria. PubMed DOI
Spät P., Macek B., Forchhammer K. (2015). Phosphoproteome of the cyanobacterium PubMed DOI PMC
Sweetlove L. J., Fernie A. R. (2018). The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation. PubMed DOI PMC
Valladares A., Montesinos M. L., Herrero A., Flores E. (2002). An ABC-type, high-affinity urea permease identified in cyanobacteria. PubMed DOI
Vegapalas M. A., Flores E., Herrero A. (1992). NtcA, a global nitrogen regulator from the cyanobacterium PubMed DOI
Vitousek P. M., Howarth R. W. (1991). Nitrogen limitation on land and in the sea - how can it occur.
Vizcaino J. A., Cote R. G., Csordas A., Dianes J. A., Fabregat A., Foster J. M., et al. (2013). The proteomics identifications (PRIDE) database and associated tools: status in 2013. PubMed DOI PMC
Vogel A. I., Furniss B. S., Vogel A. I. (1989).
Watzer B., Engelbrecht A., Hauf W., Stahl M., Maldener I., Forchhammer K. (2015). Metabolic pathway engineering using the central signal processor PII. PubMed DOI PMC
Watzer B., Forchhammer K. (2018). Cyanophycin synthesis optimizes nitrogen utilization in the unicellular cyanobacterium PubMed DOI PMC
Whitton B. A. (2012).
Wirén N. V., Merrick M. (2004). “Regulation and function of ammonium carriers in bacteria, fungi, and plants,” in
Xu Y. B., Carr P. D., Clancy P., Garcia-Dominguez M., Forchhammer K., Florencio F., et al. (2003). The structures of the PII proteins from the cyanobacteria PubMed DOI
Zeth K., Fokina O., Forchhammer K. (2014). Structural basis and target-specific modulation of ADP sensing by the PubMed DOI PMC
Zhao M. X., Jiang Y. L., Xu B. Y., Chen Y., Zhang C. C., Zhou C. Z. (2010). Crystal structure of the cyanobacterial signal transduction protein PII in complex with PipX. PubMed DOI