A mechanistic study of the influence of nitrogen and energy availability on the NH4+ sensitivity of nitrogen assimilation in Synechococcus
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
16-16343S
Grantová Agentura České Republiky
2017
Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme
42076206
National Natural Science Foundation of China
2020A1515011073
Guangdong Basic and Applied Basic Research Foundation
NIH HHS - United States
T32-GMN080201-09
NIGMS NIH HHS - United States
PubMed
35595516
PubMed Central
PMC9467657
DOI
10.1093/jxb/erac219
PII: 6590035
Knihovny.cz E-zdroje
- Klíčová slova
- Ammonium, N metabolism, NtcA regulation, cyanobacteria, glutamine synthetase, limitation, nitrate reductase, nitrite reductase,
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- dusičnany metabolismus MeSH
- dusík metabolismus MeSH
- nitrátreduktasa genetika metabolismus MeSH
- Synechococcus * genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- dusičnany MeSH
- dusík MeSH
- nitrátreduktasa MeSH
In most algae, NO3- assimilation is tightly controlled and is often inhibited by the presence of NH4+. In the marine, non-colonial, non-diazotrophic cyanobacterium Synechococcus UTEX 2380, NO3- assimilation is sensitive to NH4+ only when N does not limit growth. We sequenced the genome of Synechococcus UTEX 2380, studied the genetic organization of the nitrate assimilation related (NAR) genes, and investigated expression and kinetics of the main NAR enzymes, under N or light limitation. We found that Synechococcus UTEX 2380 is a β-cyanobacterium with a full complement of N uptake and assimilation genes and NAR regulatory elements. The nitrate reductase of our strain showed biphasic kinetics, previously observed only in freshwater or soil diazotrophic Synechococcus strains. Nitrite reductase and glutamine synthetase showed little response to our growth treatments, and their activity was usually much higher than that of nitrate reductase. NH4+ insensitivity of NAR genes may be associated with the stimulation of the binding of the regulator NtcA to NAR gene promoters by the high 2-oxoglutarate concentrations produced under N limitation. NH4+ sensitivity in energy-limited cells fits with the fact that, under these conditions, the use of NH4+ rather than NO3- decreases N-assimilation cost, whereas it would exacerbate N shortage under N limitation.
Institute of Microbiology ASCR Algatech Trebon Czech Republic
National Research Council Institute of Marine Science Venezia Italy
Zobrazit více v PubMed
Aichi M, Maeda S-I, Ichikawa K, Omata T.. 2004. Nitrite-responsive activation of the nitrate assimilation operon in cyanobacteria plays an essential role in up-regulation of nitrate assimilation activities under nitrate-limited growth conditions. Journal of Bacteriology 186, 3224–3229. PubMed PMC
Aichi M, Omata T.. 1997. Involvement of NtcB, a LysR family transcription factor, in nitrite activation of the nitrate assimilation operon in the cyanobacterium Synechococcus sp. strain PCC 7942. Journal of Bacteriology 179, 4671–4675. PubMed PMC
Aichi M, Takatani N, Omata T.. 2001. Role of NtcB in activation of nitrate assimilation genes in the cyanobacterium Synechocystis sp. strain PCC 6803. Journal of Bacteriology 183, 5840–5847. PubMed PMC
Aichi M, Yoshihara S, Yamashita M, Maeda S, Nagai K, Omata T.. 2006. Characterization of the nitrate-nitrite transporter of the major facilitator superfamily (the nrtP gene product) from the cyanobacterium Nostoc punctiforme strain ATCC 29133. Bioscience, Biotechnology, and Biochemistry 70, 2682–2689. PubMed
Alfonso M, Perewoska I, Kirilovsky D.. 2001. Redox control of ntcA gene expression in Synechocystis sp. PCC 6803. Nitrogen availability and electron transport regulate the levels of the NtcA protein. Plant Physiology 125, 969–981. PubMed PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ.. 1990. Basic local alignment search tool. Journal of Molecular Biology 215, 403–410. PubMed
Ashida H, Saito Y, Kojima C, Kobayashi K, Ogasawara N, Yokota A.. 2003. A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO. Science 302, 286–290. PubMed
Badger MR, Bek EJ.. 2008. Multiple Rubisco forms in proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle. Journal of Experimental Botany 59, 1525–1541. PubMed
Bird C, Wyman M.. 2003. Nitrate/nitrite assimilation system of the marine picoplanktonic cyanobacterium Synechococcus sp. strain WH 8103: effect of nitrogen source and availability on gene expression. Applied and Environmental Microbiology 69, 7009–7018. PubMed PMC
Boetzer M, Pirovano W.. 2012. Toward almost closed genomes with GapFiller. Genome Biology 13, R56. PubMed PMC
Bolger AM, Lohse M, Usadel B.. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. PubMed PMC
Bruland KW, Lohan MC, Aguilar-Islas AM, Smith GJ, Sohst B, Baptista A.. 2008. Factors influencing the chemistry of the near-field Columbia River plume: Nitrate, silicic acid, dissolved Fe, and dissolved Mn. Journal of Geophysical Research: Oceans 113, doi:10.1029/2007JC004702. DOI
Collos Y, Harrison PJ.. 2014. Acclimation and toxicity of high ammonium concentrations to unicellular algae. Marine Pollution Bulletin 80, 8–23. PubMed
Dai G, Deblois CP, Liu S, Juneau P, Qiu B.. 2008. Differential sensitivity of five cyanobacterial strains to ammonium toxicity and its inhibitory mechanism on the photosynthesis of rice-field cyanobacterium Ge–Xian–Mi (Nostoc). Aquatic Toxicology 89, 113–121. PubMed
Delwiche CF, Palmer JD.. 1996. Rampant horizontal transfer and duplication of Rubisco genes in eubacteria and plastids. Molecular Biology and Evolution 13, 873–882. PubMed
Dortch Q. 1990. The interaction between ammonium and nitrate uptake in phytoplankton. Marine Ecology Progress Series 61, 183–201.
Espinosa J, Forchhammer K, Burillo S, Contreras A.. 2006. Interaction network in cyanobacterial nitrogen regulation: PipX, a protein that interacts in a 2-oxoglutarate dependent manner with PII and NtcA. Molecular Microbiology 61, 457–469. PubMed
Espinosa J, Forchhammer K, Contreras A.. 2007. Role of the Synechococcus PCC 7942 nitrogen regulator protein PipX in NtcA-controlled processes. Microbiology 153, 711–718. PubMed
Espinosa J, Rodríguez-Mateos F, Salinas P, Lanza VF, Dixon R, de la Cruz F, Contreras A.. 2014. PipX, the coactivator of NtcA, is a global regulator in cyanobacteria. Proceedings of the National Academy of Sciences, USA 111, E2423–E2430. PubMed PMC
Esteves-Ferreira AA, Inaba M, Fort A, Araújo WL, Sulpice R.. 2018. Nitrogen metabolism in cyanobacteria: metabolic and molecular control, growth consequences and biotechnological applications. Critical Reviews in Microbiology 44, 541–560. PubMed
Fanesi A, Raven JA, Giordano M.. 2014. Growth rate affects the responses of the green alga Tetraselmis suecica to external perturbations. Plant, Cell and Environment 37, 512–519. PubMed
Fernandez E, Galvan A.. 2008. Nitrate assimilation in Chlamydomonas. Eukaryotic Cell 7, 555–559. PubMed PMC
Forcada-Nadal A, Llácer JL, Contreras A, Marco-Marín C, Rubio V.. 2018. The PII-NAGK-PipX-NtcA regulatory axis of cyanobacteria: a tale of changing partners, allosteric effectors and non-covalent interactions. Frontiers in Molecular Biosciences 5, 91. PubMed PMC
Forchhammer K. 2008. PII signal transducers: novel functional and structural insights. Trends in Microbiology 16, 65–72. PubMed
Forchhammer K, de Marsac NT.. 1995. Functional analysis of the phosphoprotein PII (glnB gene product) in the cyanobacterium Synechococcus sp. strain PCC 7942. Journal of Bacteriology 177, 2033–2040. PubMed PMC
Forchhammer K, Selim KA.. 2020. Carbon/nitrogen homeostasis control in cyanobacteria. FEMS Microbiology Reviews 44, 33–53. PubMed PMC
Gawronski JD, Benson DR.. 2004. Microtiter assay for glutamine synthetase biosynthetic activity using inorganic phosphate detection. Analytical Biochemistry 327, 114–118. PubMed
Giordano M. 2013. Homeostasis: an underestimated focal point of ecology and evolution. Plant Science 211, 92–101. PubMed
Giordano M, Raven JA.. 2014. Nitrogen and sulfur assimilation in plants and algae. Aquatic Botany 118, 45–61.
Herrero A, Flores E.. 2018. Genetic responses to carbon and nitrogen availability in Anabaena. Environmental Microbiology 21, 1–17. PubMed
Herrero A, Flores E, Guerrero MG.. 1981. Regulation of nitrate reductase levels in the cyanobacteria Anacystis nidulans, Anabaena sp. strain 7119, and Nostoc sp. strain 6719. Journal of Bacteriology 145, 175–180. PubMed PMC
Herrero A, Muro-Pastor AM, Flores E.. 2001. Nitrogen control in cyanobacteria. Journal of Bacteriology 183, 411–425. PubMed PMC
Jiang F, Wisén S, Widersten M, Bergman B, Mannervik B.. 2000. Examination of the transcription factor NtcA-binding motif by in vitro selection of DNA sequences from a random library. Journal of Molecular Biology 301, 783–793. PubMed
Kaffes A, Thoms S, Trimborn S, Rost B, Langer G, Richter KU, Köhler A, Norici A, Giordano M.. 2010. Carbon and nitrogen fluxes in the marine coccolithophore Emiliania huxleyi grown under different nitrate concentrations. Journal of Experimental Marine Biology and Ecology 393, 1–8.
Kobayashi M, Rodríguez R, Lara C, Omata T.. 1997. Involvement of the C-terminal domain of an ATP-binding subunit in the regulation of the ABC-type nitrate/nitrite transporter of the cyanobacterium Synechococcus sp. strain PCC 7942. Journal of Biological Chemistry 272, 27197–27201. PubMed
Kobayashi M, Takatani N, Tanigawa M, Omata T.. 2005. Posttranslational regulation of nitrate assimilation in the cyanobacterium Synechocystis sp. strain PCC 6803. Journal of Bacteriology 187, 498–506. PubMed PMC
Lara C, Romero JM, Guerrero MG.. 1987. Regulated nitrate transport in the cyanobacterium Anacystis nidulans. Journal of Bacteriology 169, 4376–4378. PubMed PMC
Lee H, Erickson L.. 1987. Theoretical and experimental yields for photoautotrophic, mixotrophic, and photoheterotrophic growth. Biotechnology and Bioengineering 29, 476–481. PubMed
Lee HM, Flores E, Herrero A, Houmard J, Tandeau de Marsac N.. 1998. A role for the signal transduction protein PII in the control of nitrate/nitrite uptake in a cyanobacterium. FEBS Letters 427, 291–295. PubMed
L’Helguen S, Maguer J-F, Caradec J.. 2008. Inhibition kinetics of nitrate uptake by ammonium in size-fractionated oceanic phytoplankton communities: implications for new production and f-ratio estimates. Journal of Plankton Research 30, 1179–1188.
Llácer JL, Espinosa J, Castells MA, Contreras A, Forchhammer K, Rubio V.. 2010. Structural basis for the regulation of NtcA-dependent transcription by proteins PipX and PII. Proceedings of the National Academy of Sciences, USA 107, 15397–15402. PubMed PMC
Ludwig M, Bryant DA.. 2012. Acclimation of the global transcriptome of the cyanobacterium Synechococcus sp. strain PCC 7002 to nutrient limitations and different nitrogen sources. Frontiers in Microbiology 145, 145. PubMed PMC
Luque I, Flores E, Herrero A.. 1994. Molecular mechanism for the operation of nitrogen control in cyanobacteria. The EMBO Journal 13, 2862–2869. PubMed PMC
Luque I, Vázquez-Bermúdez MF, Paz-Yepes J, Flores E, Herrero A.. 2004. In vivo activity of the nitrogen control transcription factor NtcA is subjected to metabolic regulation in Synechococcus sp. strain PCC 7942. FEMS Microbiology Letters 236, 47–52. PubMed
Maeda S-I, Aoba R, Nishino Y, Omata T.. 2019. A novel bacterial nitrate transporter composed of small transmembrane proteins. Plant and Cell Physiology 60, 2180–2192. PubMed
Maeda S-I, Kawaguchi Y, Ohe T-A, Omata T.. 1998. cis-Acting sequences required for NtcB-dependent, nitrite-responsive positive regulation of the nitrate assimilation operon in the cyanobacterium Synechococcus sp. strain PCC 7942. Journal of Bacteriology 180, 4080–4088. PubMed PMC
Marqués S, Florencio FJ, Candau P.. 1989. Ammonia assimilating enzymes from cyanobacteria: In situ and in vitro assay using high-performance liquid chromatography. Analytical Biochemistry 180, 152–157. PubMed
Martin-Nieto J, Flores E, Herrero A.. 1992. Biphasic kinetic behavior of nitrate reductase from heterocystous, nitrogen-fixing cyanobacteria. Plant Physiology 100, 157–163. PubMed PMC
Massouras A, Hens K, Gubelmann C, Uplekar S, Decouttere F, Rougemont J, Cole ST, Deplancke B.. 2010. Primer-initiated sequence synthesis to detect and assemble structural variants. Nature Methods 7, 485–486. PubMed
Mérida A, Candau P, Florencio FJ.. 1991. Regulation of glutamine synthetase activity in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 by the nitrogen source: effect of ammonium. Journal of Bacteriology 173, 4095–4100. PubMed PMC
Moore KR, Magnabosco C, Momper LM, Gold DA, Bosak T, Fournier GP.. 2019. An expanded ribosomal phylogeny of cyanobacteria supports a deep placement of plastids. Frontiers in Microbiology 10, 1612. PubMed PMC
Moore LR, Post AF, Rocap G, Chisholm SW.. 2002. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnology and Oceanography 47, 989–996.
Muro-Pastor MI, Reyes JC, Florencio FJ.. 2005. Ammonium assimilation in cyanobacteria. Photosynthesis Research 83, 135–150. PubMed
Nicholas D, Nason A.. 1957. Determination of nitrate and nitrite. Methods in Enzymology 3, 981–984.
Nissen P, Martín-Nieto J.. 1998. ‘Multimodal’ kinetics: Cyanobacterial nitrate reductase and other enzyme, transport and binding systems. Physiologia Plantarum 104, 503–511.
Nitschmann WH, Peschek GA.. 1986. Oxidative phosphorylation and energy buffering in cyanobacteria. Journal of Bacteriology 168, 1205–1211. PubMed PMC
Noctor G, Foyer CH.. 1998. A re-evaluation of the ATP: NADPH budget during C3 photosynthesis: a contribution from nitrate assimilation and its associated respiratory activity?. Journal of Experimental Botany 49, 1895–1908.
Oaks A, Stulen I, Jones K, Winspear MJ, Misra S, Boesel IL.. 1980. Enzymes of nitrogen assimilation in maize roots. Planta 148, 477–484. PubMed
Ohashi Y, Shi W, Takatani N, Aichi M, Maeda S, Watanabe S, Yoshikawa H, Omata T.. 2011. Regulation of nitrate assimilation in cyanobacteria. Journal of Experimental Botany 62, 1411–1424. PubMed
Paerl RW, Tozzi S, Kolber ZS, Zehr JP.. 2012. Variation in the abundance of Synechococcus sp. cc9311 narB mRNA relative to changes in light, nitrogen growth conditions and nitrate assimilation. Journal of Phycology 48, 1028–1039. PubMed
Peterson GL. 1977. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Analytical Biochemistry 83, 346–356. PubMed
Rae BD, Long BM, Badger MR, Price GD.. 2013. Functions, compositions, and evolution of the two types of carboxysomes: Polyhedral microcompartments that facilitate CO2 fixation in cyanobacteria and some proteobacteria. Microbiology and Molecular Biology Reviews 77, 357–379. PubMed PMC
Rose TM, Henikoff JG, Henikoff S.. 2003. CODEHOP (COnsensus-DEgenerate hybrid oligonucleotide primer) PCR primer design. Nucleic Acids Research 31, 3763–3766. PubMed PMC
Ruan Z, Giordano M.. 2017. The use of NH4+ rather than NO3 − affects cell stoichiometry, C allocation, photosynthesis and growth in the cyanobacterium Synechococcus sp. UTEX LB 2380, only when energy is limiting. Plant, Cell and Environment 40, 227–236. PubMed
Ruan Z, Prášil O, Giordano M.. 2018. The phycobilisomes of Synechococcus sp. are constructed to minimize nitrogen use in nitrogen-limited cells and to maximize energy capture in energy-limited cells. Environmental and Experimental Botany 150, 152–160.
Ruan Z, Raven JA, Giordano M.. 2017. In Synechococcus sp. competition for energy between assimilation and acquisition of C and those of N only occurs when growth is light limited. Journal of Experimental Botany 68, 3829–3839. PubMed
Sakamoto T, Bryant DA.. 1999. Nitrate transport and not photoinhibition limits growth of the freshwater cyanobacterium Synechococcus species PCC 6301 at low temperature. Plant Physiology 119, 785–794. PubMed PMC
Sakamoto T, Inoue-Sakamoto K, Bryant DA.. 1999. A novel nitrate/nitrite permease in the marine cyanobacterium Synechococcus sp. strain PCC 7002. Journal of Bacteriology 181, 7363–7372. PubMed PMC
Sakamoto T, Inoue-Sakamoto K, Persson S, Bryant DA.. 2008. Transcription factor NtcB specifically controls the nitrate assimilation genes in the marine cyanobacterium Synechococcus sp. strain PCC 7002. Phycological Research 56, 223–237.
Sánchez-Baracaldo P, Ridgwell A, Raven JA.. 2014. A neoproterozoic transition in the marine nitrogen cycle. Current Biology 24, 652–657. PubMed
Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, Post AF, Hagemann M, Paulsen I, Partensky F.. 2009. Ecological genomics of marine picocyanobacteria. Microbiology and Molecular Biology Reviews 73, 249–299. PubMed PMC
Scherer S, Häfele U, Krüger GH, Böger P.. 1988. Respiration, cyanide-insensitive oxygen uptake and oxidative phosphorylation in cyanobacteria. Physiologia Plantarum 72, 379–384.
Sekowska A, Ashida H, Danchin A.. 2019. Revisiting the methionine salvage pathway and its paralogues. Microbial Biotechnology 12, 77–97. PubMed PMC
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J.. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology 7, 539. PubMed PMC
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. PubMed PMC
Tabita FR, Satagopan S, Hanson TE, Kreel NE, Scott SS.. 2008. Distinct form I, II, III, and IV Rubisco proteins from the three kingdoms of life provide clues about Rubisco evolution and structure/function relationships. Journal of Experimental Botany 59, 1515–1524. PubMed
Tanigawa R, Shirokane M, Maeda S-i, Omata T, Tanaka K, Takahashi H.. 2002. Transcriptional activation of NtcA-dependent promoters of Synechococcus sp. PCC 7942 by 2-oxoglutarate in vitro. Proceedings of the National Academy of Sciences, USA 99, 4251–4255. PubMed PMC
Wan N, DeLorenzo DM, He L, You L, Immethun CM, Wang G, Baidoo EE, Hollinshead W, Keasling JD, Moon TS.. 2017. Cyanobacterial carbon metabolism: Fluxome plasticity and oxygen dependence. Biotechnology and Bioengineering 114, 1593–1602. PubMed
Wang TH, Chen YH, Huang JY, Liu KC, Ke SC, Chu HA.. 2011. Enzyme kinetics, inhibitors, mutagenesis and electron paramagnetic resonance analysis of dual-affinity nitrate reductase in unicellular N2-fixing cyanobacterium Cyanothece sp. PCC 8801. Plant Physiology and Biochemistry 49, 1369–1376. PubMed
Wang TH, Fu H, Shieh YJ.. 2003. Monomeric NarB is a dual-affinity nitrate reductase, and its activity is regulated differently from that of nitrate uptake in the unicellular diazotrophic cyanobacterium Synechococcus sp. strain RF-1. Journal of Bacteriology 185, 5838–5846. PubMed PMC
Watzer B, Spät P, Neumann N, Koch M, Sobotka R, Macek B, Hennrich O, Forchhammer K.. 2019. The signal transduction protein PII controls ammonium, nitrate and urea uptake in cyanobacteria. Frontiers in Microbiology 10, 1428. PubMed PMC
Wyman M, Bird C.. 2007. Lack of control of nitrite assimilation by ammonium in an oceanic picocyanobacterium, Synechococcus sp. strain WH 8103. Applied and Environmental Microbiology 73, 3028–3033. PubMed PMC
Zhang S, Bryant DA.. 2011. The tricarboxylic acid cycle in cyanobacteria. Science 334, 1551–1553. PubMed
Zhang S, Qian X, Chang S, Dismukes GC, Bryant DA.. 2016. Natural and synthetic variants of the tricarboxylic acid cycle in cyanobacteria: introduction of the GABA shunt into Synechococcus sp. PCC 7002. Frontiers in Microbiology 7, 1972. PubMed PMC
Zhao M-X, Jiang Y-L, He Y-X, Chen Y-F, Teng Y-B, Chen Y, Zhang C-C, Zhou C-Z.. 2010. Structural basis for the allosteric control of the global transcription factor NtcA by the nitrogen starvation signal 2-oxoglutarate. Proceedings of the National Academy of Sciences, USA 107, 12487–12492. PubMed PMC