Late side effects of 3T MRI-guided 3D high-dose rate brachytherapy of cervical cancer : Institutional experiences

. 2019 Nov ; 195 (11) : 972-981. [epub] 20190715

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31309266
Odkazy

PubMed 31309266
DOI 10.1007/s00066-019-01491-0
PII: 10.1007/s00066-019-01491-0
Knihovny.cz E-zdroje

PURPOSE: This article reports experiences with 3T magnetic resonance imaging(MRI)-guided brachytherapy (BT) for cervical cancer focusing on late side effects. METHODS: Between June 2012 and March 2017 a total of 257 uterovaginal BT administrations were performed in 61 consecutive patients with inoperable cervical cancer. All patients were treated with BT combined with external beam radiotherapy. RESULTS: The mean HR-CTV (high risk-clinical target volume) D90 was 87 ± 5.1 Gy equivalent dose corresponding to the conventional fractionation using 2 Gy per fraction (EQD2, range 70.7-97.9 Gy). The mean doses in OAR (organs at risk), namely rectum, sigmoid and bladder were D2 cm3rectum = 62.6 ± 6.9 Gy EQD2 (range 38.2-77.2 Gy), D2 cm3sigmoid = 66.2 ± 6.8 Gy EQD2 (43.2-78.6 Gy) and D2 cm3bladder = 75.1 ± 8.3 Gy EQD2 (58.2-92.6 Gy). There were no signs of late gastrointestinal (GI) toxicity in 49 patients, grade 3 toxicity was seen in 2 patients and grade 4 toxicity in 3 patients. There were no signs of late genitourinary (GU) toxicity in 41 patients, grade 3 toxicity was seen in 4 patients and no signs of grade 4 toxicity were seen. After the treatment, 60 patients (98.4%) achieved locoregional remission. In 54 patients (88.5%) the remission was complete, whereas in 6 patients (9.8%) remission was partial. CONCLUSION: The use of 3T MRI-guided BT leads to achievement of high rates of local control with limited late morbidity as demonstrated in this series of patients.

Zobrazit více v PubMed

Brachytherapy. 2012 Jan-Feb;11(1):47-52 PubMed

Int J Radiat Oncol Biol Phys. 2015 Mar 1;91(3):540-7 PubMed

Lancet. 2001 Sep 8;358(9284):781-6 PubMed

Radiother Oncol. 2006 Jan;78(1):67-77 PubMed

Int J Cancer. 2015 Mar 1;136(5):E359-86 PubMed

Int J Radiat Oncol Biol Phys. 2009 Sep 1;75(1):56-63 PubMed

Radiother Oncol. 2007 May;83(2):148-55 PubMed

Radiother Oncol. 2016 Sep;120(3):447-454 PubMed

Klin Onkol. 2014;27(1):45-51 PubMed

Int J Radiat Oncol Biol Phys. 2017 Nov 1;99(3):608-617 PubMed

Int J Radiat Oncol Biol Phys. 1993 Dec 1;27(5):1051-6 PubMed

Brachytherapy. 2012 Jan-Feb;11(1):33-46 PubMed

Radiother Oncol. 2011 Jul;100(1):116-23 PubMed

Insights Imaging. 2017 Oct;8(5):471-481 PubMed

Int J Radiat Oncol Biol Phys. 2016 Mar 1;94(3):588-97 PubMed

Int J Radiat Oncol Biol Phys. 2014 Oct 1;90(2):320-8 PubMed

J Clin Oncol. 2002 Feb 15;20(4):966-72 PubMed

Radiother Oncol. 2013 Apr;107(1):69-74 PubMed

Ceska Gynekol. 2008 Jun;73(3):144-9 PubMed

Jpn J Clin Oncol. 2012 Apr;42(4):309-13 PubMed

Int J Radiat Oncol Biol Phys. 1993 Nov 15;27(4):871-8 PubMed

Radiother Oncol. 2006 Apr;79(1):80-6 PubMed

Radiother Oncol. 2005 Mar;74(3):235-45 PubMed

Strahlenther Onkol. 2016 Dec;192(12):922-930 PubMed

N Engl J Med. 1999 Apr 15;340(15):1137-43 PubMed

Acta Oncol. 2013 Oct;52(7):1510-9 PubMed

Strahlenther Onkol. 2019 May;195(5):430-440 PubMed

Int J Radiat Oncol Biol Phys. 2006 Jan 1;64(1):197-204 PubMed

Strahlenther Onkol. 2017 Jul;193(7):543-551 PubMed

Int J Radiat Oncol Biol Phys. 2007 Oct 1;69(2):619-27 PubMed

Int J Radiat Oncol Biol Phys. 1995 Jul 30;32(5):1275-88 PubMed

Radiother Oncol. 2003 Jul;68(1):51-9 PubMed

Int J Surg Oncol. 2018 Aug 1;2018:9120753 PubMed

Int J Radiat Oncol Biol Phys. 2007 Jun 1;68(2):491-8 PubMed

Radiother Oncol. 2003 Apr;67(1):69-76 PubMed

Radiother Oncol. 1992 Dec;25(4):273-9 PubMed

Oncologist. 2013;18(4):415-22 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...