Microbiome and Cognitive Impairment: Can Any Diets Influence Learning Processes in a Positive Way?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
31316375
PubMed Central
PMC6609888
DOI
10.3389/fnagi.2019.00170
Knihovny.cz E-zdroje
- Klíčová slova
- SCFA, antibiotics, cognition, diet, learning, microbiome, neurological disorders,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The aim of this review is to summarize the effect of human intestinal microbiome on cognitive impairments and to focus primarily on the impact of diet and eating habits on learning processes. Better understanding of the microbiome could revolutionize the possibilities of therapy for many diseases. The authors performed a literature review of available studies on the research topic describing the influence of human microbiome and diet on cognitive impairment or learning processes found in the world's acknowledged databases Web of Science, PubMed, Springer, and Scopus. The digestive tube is populated by billions of living microorganisms including viruses, bacteria, protozoa, helminths, and microscopic fungi. In adulthood, under physiological conditions, the intestinal microbiome appears to be relatively steady. However, it is not true that it would not be influenced, both in the positive sense of the word and in the negative one. The basic pillars that maintain a steady microbiome are genetics, lifestyle, diet and eating habits, geography, and age. It is reported that the gastrointestinal tract and the brain communicate with each other through several pathways and one can speak about gut-brain axis. New evidence is published every year about the association of intestinal dysbiosis and neurological/psychiatric diseases. On the other hand, specific diets and eating habits can have a positive effect on a balanced microbiota composition and thus contribute to the enhancement of cognitive functions, which are important for any learning process.
Zobrazit více v PubMed
Adolphus K., Lawton C. L., Dye L. (2013). The effects of breakfast on behavior and academic performance in children and adolescents. Front. Hum. Neurosci. 7:425. 10.3389/fnhum.2013.00425 PubMed DOI PMC
Ahluwalia V., Betrapally N. S., Hylemon P. B., White M. B., Gillevet P. M., Unser A. B., et al. . (2016). Impaired gut-liver-brain axis in patients with cirrhosis. Sci. Rep. 6:26800. 10.1038/srep26800 PubMed DOI PMC
Al-Asmakh M., Hedin L. (2015). Microbiota and the control of blood-tissue barriers. Tissue Barriers 3:e1039691. 10.1080/21688370.2015.1039691 PubMed DOI PMC
Angre K. (2019). How malnutrition impacts learning. Available online at: https://www.ndtv.com/india-news/how-malnutrition-impacts-learning-523729. Accessed March 10, 2019.
Bäckhed F., Roswall J., Peng Y., Feng Q., Jia H., Kovatcheva-Datchary P., et al. . (2015). Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703. 10.1016/j.chom.2015.04.004 PubMed DOI
Bajaj J. S., Ridlon J. M., Hylemon P. B., Thacker L. R., Heuman D. M., Smith S., et al. . (2012). Linkage of gut microbiome with cognition in hepatic encephalopathy. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G168–G175. 10.1152/ajpgi.00190.2011 PubMed DOI PMC
Barrett E., Ross R. P., O’Toole P. W., Fitzgerald G. F., Stanton C. (2012). γ-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol. 113, 411–417. 10.1111/j.1365-2672.2012.05344.x PubMed DOI
Bauer K. C., Huus K. E., Finlay B. B. (2016). Microbes and the mind: emerging hallmarks of the gut microbiota-brain axis. Cell. Microbiol. 18, 632–644. 10.1111/cmi.12585 PubMed DOI
Bercik P., Denou E., Collins J., Jackson W., Lu J., Jury J., et al. . (2011). The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141, 599–609. 10.1053/j.gastro.2011.04.052 PubMed DOI
Blekhman R., Goodrich J. K., Huang K., Sun Q., Bukowski R., Bell J. T., et al. . (2015). Host genetic variation impacts microbiome composition across human body sites. Genome Biol. 16:191. 10.1186/s13059-015-0759-1 PubMed DOI PMC
Bohórquez D. V., Liddl R. A. (2015). The gut connectome: making sense of what you eat. J. Clin. Invest. 125, 888–890. 10.1172/JCI81121 PubMed DOI PMC
Bravo J. A., Forsythe P., Chew M. V., Escaravage E., Savignac H. M., Dinan T. G., et al. . (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. U S A 108, 16050–16055. 10.1073/pnas.1102999108 PubMed DOI PMC
Bruce-Keller A. J., Salbaum J. M., Luo M., Blanchard E., Taylor C. M., Welsh D. A., et al. . (2015). Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol. Psychiatry 77, 607–615. 10.1016/j.biopsych.2014.07.012 PubMed DOI PMC
Camer D., Yu Y., Szabo A., Fernandez F., Dinh C. H. L., Huang X. F. (2015). Bardoxolone methyl prevents high-fat diet-induced alterations in prefrontal cortex signalling molecules involved in recognition memory. Prog. Neuropsychopharmacol. Biol. Psychiatry 59, 68–75. 10.1016/j.pnpbp.2015.01.004 PubMed DOI
Caputi V., Giron M. C. (2018). Microbiome-gut-brain axis and toll-like receptors in Parkinson’s disease. Int. J. Mol. Sci. 19:E1689. 10.3390/ijms19061689 PubMed DOI PMC
Daniel H., Gholami A. M., Berry D., Desmarchelier C., Hahne H., Loh G., et al. . (2014). High-fat diet alters gut microbiota physiology in mice. ISME J. 8, 295–308. 10.1038/ismej.2013.155 PubMed DOI PMC
Darmon N., Drewnowski A. (2008). Does social class predict diet quality? Am. J. Clin. Nutr. 87, 1107–1117. 10.1093/ajcn/87.5.1107 PubMed DOI
Davari S., Talaei S. A., Alaei H., Salami M. (2013). Probiotics treatment improves diabetes-induced impairment of synaptic activity and cognitive function: behavioral and electrophysiological proofs for microbiome-gut-brain axis. Neuroscience 240, 287–296. 10.1016/j.neuroscience.2013.02.055 PubMed DOI
David L. A., Maurice C. F., Carmody R. N., Gootenberg D. B., Button J. E., Wolfe B. E., et al. . (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563. 10.1038/nature12820 PubMed DOI PMC
de La Serre C. B., Ellis C. L., Lee J., Hartman A. L., Rutledge J. C., Raybould H. E. (2010). Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G440–G448. 10.1152/ajpgi.00098.2010 PubMed DOI PMC
Desbonnet L., Clarke G., Traplin A., O’Sullivan O., Crispie F., Moloney R. D., et al. . (2015). Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav. Immun. 48, 165–173. 10.1016/j.bbi.2015.04.004 PubMed DOI
Dinan T. G., Stilling R. M., Stanton C., Cryan J. F. (2015). Collective unconscious: how gut microbes shape human behavior. J. Psychiatr. Res. 63, 1–9. 10.1016/j.jpsychires.2015.02.021 PubMed DOI
Dinan T. G., Cryan J. F. (2017). Gut instintcs: microbiota as a key regulator of brain development, ageing and neurodegeneration. J. physiol. 595, 489–503. 10.1113/JP273106 PubMed DOI PMC
Fasano A. (2012). Leaky gut and autoimmune diseases. Clin. Rev. Allergy Immunol. 42, 71–78. 10.1007/s12016-011-8291-x PubMed DOI
Forsythe P., Bienenstock J., Kunze W. A. (2014). Vagal pathways for microbiome-brain-gut axis communication. Adv. Exp. Med. Biol. 817, 115–133. 10.1007/978-1-4939-0897-4_5 PubMed DOI
Fröhlich E. E., Farzi A., Mayerhofer R., Reichmann F., Jačan A., Wagner B., et al. . (2016). Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication. Brain Behav. Immun. 56, 140–155. 10.1016/j.bbi.2016.02.020 PubMed DOI PMC
Furness J. B., Callaghan B. P., Rivera L. R., Cho H. J. (2014). The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv. Exp. Med. Biol. 817, 39–71. 10.1007/978-1-4939-0897-4_3 PubMed DOI
Gareau M. G., Wine E., Rodrigues D. M., Cho J. H., Whary M. T., Philpott D. J., et al. . (2011). Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60, 307–317. 10.1136/gut.2009.202515 PubMed DOI
Herculano B., Tamura M., Ohba A., Shimatani M., Kutsuna N., Hisatsune T. (2013). β-alanyl-L-histidine rescues cognitive deficits caused by feeding a high fat diet in a transgenic mouse model of Alzheimer’s disease. J. Alzheimers Dis. 33, 983–997. 10.3233/JAD-2012-121324 PubMed DOI
Hsiao E. Y., McBride S. W., Hsien S., Sharon G., Hyde E. R., McCue T., et al. . (2013). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451–1463. 10.1016/j.cell.2013.11.024 PubMed DOI PMC
Intlekofer K. A., Berchtold N. C., Malvaez M., Carlos A. J., McQuown S. C., Cunningham M. J., et al. . (2013). Exercise and sodium butyrate transform a subthreshold learning event into long-term memory via a brain-derived neurotrophic factor-dependent mechanism. Neuropsychopharmacology 38, 2027–2034. 10.1038/npp.2013.104 PubMed DOI PMC
Koppel N., Balskus E. P. (2016). Exploring and understanding the biochemical diversity of the human microbiota. Cell Chem. Biol. 23, 18–30. 10.1016/j.chembiol.2015.12.008 PubMed DOI
Ley R. E., Peterson D. A., Gordon J. I. (2006). Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124, 837–848. 10.1016/j.cell.2006.02.017 PubMed DOI
Liang S., Wang T., Hu X., Luo J., Li W., Wu X., et al. . (2015). Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 310, 561–577. 10.1016/j.neuroscience.2015.09.033 PubMed DOI
Lichtwark I. T., Newnham E. D., Robinson S. R., Shepherd S. J., Hosking P., Gibson P. R., et al. . (2014). Cognitive impairment in coeliac disease improves on a gluten-free diet and correlates with histological and serological indices of disease severity. Aliment. Pharmacol. Ther. 40, 160–170. 10.1111/apt.12809 PubMed DOI
Lloyd-Price J., Abu-Ali G., Huttenhower C. (2016). The healthy human microbiome. Genome Med. 8:51. 10.1186/s13073-016-0307-y PubMed DOI PMC
Lozupone C. A., Stombaugh J. I., Gordon J. I., Jansson J. K., Knight R. (2012). Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230. 10.1038/nature11550 PubMed DOI PMC
Macfarlane G. T., Macfarlane S. (2011). Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics. J. Clin. Gastroenterol. 45, S120–S127. 10.1097/mcg.0b013e31822fecfe PubMed DOI
Magnusson K. R., Hauck L., Jeffrey B. M., Elias V., Humphrey A., Nath R., et al. . (2015). Relationships between diet-related changes in the gut microbiome and cognitive flexibility. Neuroscience 300, 128–140. 10.1016/j.neuroscience.2015.05.016 PubMed DOI
Mahoney C., Taylor H., Kanarek R. (2005). “The acute effects of meals on cognitive performance,” in Nutritional Neuroscience, eds Lieberman H., Kanarek R., Prasad C. (Boca Raton, FL: CRC Press; ), 73–91.
McKenney P. T., Pamer E. G. (2015). From hype to hope: the gut microbiota in enteric infectious disease. Cell 163, 1326–1332. 10.1016/j.cell.2015.11.032 PubMed DOI PMC
Moody L., Chen H., pan Y. X. (2017). Early-life nutritional programming of cognition-the fundamental role of epigenetic mechanisms in mediating the relation between early-life environment and learning and memory process. Adv. Nutr. 8, 337–356. 10.3945/an.116.014209 PubMed DOI PMC
Mulak A., Bonaz B. (2004). Irritable bowel syndrome: a model of the brain-gut interactions. Med. Sci. Monit. 10, RA55–RA62. 10.1016/j.jpsychores.2004.04.089 PubMed DOI
Noble J. M., Scarmeas N., Celenti R. S., Elkind M. S. V., Wright C. B., Schupf N., et al. . (2014). Serum IgG antibody levels to periodontal microbiota are associated with incident Alzheimer disease. PLoS ONE 9:e114959. 10.1371/journal.pone.0114959 PubMed DOI PMC
Noble E. E., Hsu T. M., Jones R. B., Fodor A. A., Goran M. I., Kanoski S. E. (2017a). Early-life sugar consumption affects the rat microbiome independently of obesity. J. Nutr. 147, 20–28. 10.3945/jn.116.238816 PubMed DOI PMC
Noble E. E., Hsu T. M., Kanoski S. E. (2017b). Gut to brain dysbiosis: mechanisms linking western diet consumption, the microbiome and cognitive impairment. Front. Behav. Neurosci. 11:9. 10.3389/fnbeh.2017.00009 PubMed DOI PMC
Oh J., Byrd A. L., Park M., NISC Comparative Sequencing Program. Kong H. H., Segre J. A. (2016). Temporal stability of the human skin microbiome. Cell 165, 854–866. 10.1016/j.cell.2016.04.008 PubMed DOI PMC
O’Mahony S. M., Clarke G., Borre Y. E., Dinan T. G., Cryan J. F. (2015). Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 277, 32–48. 10.1016/j.bbr.2014.07.027 PubMed DOI
Parashar A., Udayabanu M. (2016). Gut microbiota regulates key modulators of social behavior. Eur. Neuropsychopharmacol. 26, 78–91. 10.1016/j.euroneuro.2015.11.002 PubMed DOI
Pistell P. J., Morrison C. D., Gupta S., Knight A. G., Keller J. N., Ingram D. K., et al. . (2010). Cognitive impairment following high fat diet consumption is associated with brain inflammation. J. Neuroimmunol. 219, 25–32. 10.1016/j.jneuroim.2009.11.010 PubMed DOI PMC
Prado E., Dewey K. (2012). Nutrition and Brain Development in Early Life. AandT Technical Brief Issue 4. Washington, DC: Alive and Thrive. PubMed
Puig K. L., Floden A. M., Adhikari R., Golovko M. Y., Combs C. K. (2012). Amyloid precursor protein and proinflammatory changes are regulated in brain and adipose tissue in a murine model of high fat diet-induced obesity. PLoS One 7:e30378. 10.1371/journal.pone.0030378 PubMed DOI PMC
Qin J., Li Y., Cai Z., Li S., Zhu J., Zhang F., et al. . (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 490, 55–60. 10.1038/nature11450 PubMed DOI
Reddel S., Putignani L., Del Chierico F. (2019). The impact of low-FODMAPs, gluten-free and ketogenic diets on gut microbiota modulation in pathological conditions. Nutrients 11:373. 10.3390/nu11020373 PubMed DOI PMC
Reichelt A. C., Westbrook R. F., Morris M. J. (2017). Editorial: impact of diet on learning, memory and cognition. Front. Behav. Neurosci. 11:96. 10.3389/fnbeh.2017.00096 PubMed DOI PMC
Ross A. (2019). Nutrition and its effects on academic performance. Available online at: https://www.nmu.edu/sites/DrupalEducation/files/UserFiles/Files/Pre-Drupal/SiteSections/Students/GradPapers/Projects/Ross_Amy_MP.pdf. Accessed on March 15, 2019.
Saji N., Niida S., Murotani K., Hisada T., Tsuduki T., Sugimoto T., et al. . (2019). Analysis of the relationship between the gut microbiome and dementia: a cross-sectional study conducted in Japan. Sci. Rep. 9:1008. 10.1038/s41598-018-38218-7 PubMed DOI PMC
Schroeder B. O., Bäckhed F. (2016). Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 22, 1079–1089. 10.1038/nm.4185 PubMed DOI
Stefanko D. P., Barrett R. M., Ly A. R., Reolon G. K., Wood M. A. (2009). Modulation of long-term memory for object recognition via HDAC inhibition. Proc. Natl. Acad. Sci. U S A 106, 9447–9452. 10.1073/pnas.0903964106 PubMed DOI PMC
Sudo N., Chida Y., Aiba Y., Sonoda J., Oyama N., Yu X. N., et al. . (2004). Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol. 558, 263–275. 10.1113/jphysiol.2004.063388 PubMed DOI PMC
Thomas S., Izard J., Walsh E., Batich K., Chongsathidkiet P., Clarke G., et al. . (2017). The host microbiome regulates and maintains human health: a primer and perspective for non-microbiologists. Cancer Res. 77, 1783–1812. 10.1158/0008-5472.can-16-2929 PubMed DOI PMC
Tillisch K., Labus J., Kilpatrick L., Jiang Z., Stains J., Ebrat B., et al. . (2013). Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144, 1394–1401. 10.1053/j.gastro.2013.02.043 PubMed DOI PMC
Toman J., Klímová B., Vališ M. (2018). Multidomain lifestyle intervention strategies for the delay of cognitive impairment in healthy aging. Nutrients 10:E1560. 10.3390/nu10101560 PubMed DOI PMC
Tsai Y. L., Lin T. L., Chang C. J., Wu T. R., Lai W. F., Lu C. C., et al. . (2019). Probiotics, prebiotics and amelioration of diseases. J. Biomed. Sci. 26:3. 10.1186/s12929-018-0493-6 PubMed DOI PMC
Turnbaugh P. J., Hamady M., Yatsunenko T., Cantarel B. L., Duncan A., Ley R. E., et al. . (2009). A core gut microbiome in obese and lean twins. Nature 457, 480–484. 10.1038/nature07540 PubMed DOI PMC
Wang C., An Y., Yu H., Feng L., Liu Q., Lu Y., et al. . (2016). Association between exposure to the Chinese famine in different stages of early life and decline in cognitive functioning in adulthood. Front. Behav. Neurosci. 10:146. 10.3389/fnbeh.2016.00146 PubMed DOI PMC
Wang H., Lee I. S., Braun C., Enck P. (2016). Effect of probiotics on central nervous system functions in animals and humans: a systematic review. J. Neurogastroenterol. Motil. 22, 589–605. 10.5056/jnm16018 PubMed DOI PMC
Wu X., Chen P. S., Dallas S., Wilson B., Block M. L., Wang C. C., et al. . (2008). Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons. Int. J. Neuropsychopharmacol. 11, 1123–1134. 10.1017/s1461145708009024 PubMed DOI PMC
Yang I., Corwin E. J., Brennan P. A., Jordan S., Murphy J. R., Dunlop A. (2016). The infant microbiome: implications for infant health and neurocognitive development. Nurs. Res. 65, 76–88. 10.1097/nnr.0000000000000133 PubMed DOI PMC
Yatsunenko T., Rey F. E., Manary M. J., Trehan I., Dominguez-Bello M. G., Contreras M., et al. . (2012). Human gut microbiome viewed across age and geography. Nature 486, 222–227. 10.1038/nature11053 PubMed DOI PMC