The Effect of Uncoated SPIONs on hiPSC-Differentiated Endothelial Cells
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
16-31501A
Agentura Pro Zdravotnický Výzkum České Republiky
PubMed
31331030
PubMed Central
PMC6678752
DOI
10.3390/ijms20143536
PII: ijms20143536
Knihovny.cz E-resources
- Keywords
- differentiation, human induced pluripotent stem cell-derived endothelial cells, mature endothelial cells, reprogramming, superparamagnetic iron-oxide nanoparticles,
- MeSH
- Biomarkers MeSH
- Cell Differentiation * MeSH
- Human Umbilical Vein Endothelial Cells MeSH
- Endothelial Cells cytology metabolism ultrastructure MeSH
- Immunohistochemistry MeSH
- Induced Pluripotent Stem Cells cytology metabolism ultrastructure MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Magnetite Nanoparticles * chemistry MeSH
- Cell Survival MeSH
- Ferric Compounds * chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Biomarkers MeSH
- ferric oxide MeSH Browser
- Magnetite Nanoparticles * MeSH
- Ferric Compounds * MeSH
BACKGROUND: Endothelial progenitor cells (EPCs) were indicated in vascular repair, angiogenesis of ischemic organs, and inhibition of formation of initial hyperplasia. Differentiation of endothelial cells (ECs) from human induced pluripotent stem cells (hiPSC)-derived endothelial cells (hiPSC-ECs) provides an unlimited supply for clinical application. Furthermore, magnetic cell labelling offers an effective way of targeting and visualization of hiPSC-ECs and is the next step towards in vivo studies. METHODS: ECs were differentiated from hiPSCs and labelled with uncoated superparamagnetic iron-oxide nanoparticles (uSPIONs). uSPION uptake was compared between hiPSC-ECs and mature ECs isolated from patients by software analysis of microscopy pictures after Prussian blue cell staining. The acute and long-term cytotoxic effects of uSPIONs were evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay) and Annexin assay. RESULTS: We showed, for the first time, uptake of uncoated SPIONs (uSPIONs) by hiPSC-ECs. In comparison with mature ECs of identical genetic background hiPSC-ECs showed lower uSPION uptake. However, all the studied endothelial cells were effectively labelled and showed magnetic properties even with low labelling concentration of uSPIONs. uSPIONs prepared by microwave plasma synthesis did not show any cytotoxicity nor impair endothelial properties. CONCLUSION: We show that hiPSC-ECs labelling with low concentration of uSPIONs is feasible and does not show any toxic effects in vitro, which is an important step towards animal studies.
See more in PubMed
Chong M.S.K., Ng W.K., Chan J.K.Y. Concise Review: Endothelial Progenitor Cells in Regenerative Medicine: Applications and Challenges. Stem Cells Transl. Med. 2016;5:530–538. doi: 10.5966/sctm.2015-0227. PubMed DOI PMC
Asahara T., Kawamoto A., Masuda H. Concise Review: Circulating Endothelial Progenitor Cells for Vascular Medicine. Stem Cells. 2011;29:1650–1655. doi: 10.1002/stem.745. PubMed DOI
Friedrich E.B., Walenta K., Scharlau J., Nickenig G., Werner N. CD34-/CD133+/VEGFR-2+ endothelial progenitor cell subpopulation with potent vasoregenerative capacities. Circ. Res. 2006;98:e20–e25. doi: 10.1161/01.RES.0000205765.28940.93. PubMed DOI
Hirata K., Li T.S., Nishida M., Ito H., Matsuzaki M., Kasaoka S., Hamano K. Autologous bone marrow cell implantation as therapeutic angiogenesis for ischemic hindlimb in diabetic rat model. Am. J. Physiol. Heart Circ. Physiol. 2003;284:H66–H70. doi: 10.1152/ajpheart.00547.2002. PubMed DOI
Polyak B., Fishbein I., Chorny M., Alferiev I., Williams D., Yellen B., Friedman G., Levy R.J. High field gradient targeting of magnetic nanoparticle-loaded endothelial cells to the surfaces of steel stents. Proc. Natl. Acad. Sci. USA. 2008;105:698–703. doi: 10.1073/pnas.0708338105. PubMed DOI PMC
Fadini G.P., Miorin M., Facco M., Bonamico S., Baesso I., Grego F., Menegolo M., de Kreutzenberg S.V., Tiengo A., Agostini C., et al. Circulating Endothelial Progenitor Cells Are Reduced in Peripheral Vascular Complications of Type 2 Diabetes Mellitus. J. Am. Coll. Cardiol. 2005;45:1449–1457. doi: 10.1016/j.jacc.2004.11.067. PubMed DOI
Peichev M., Naiyer A.J., Pereira D., Zhu Z., Lane W.J., Williams M., Oz M.C., Hicklin D.J., Witte L., Moore M.A., et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood. 2000;95:952–958. PubMed
Hibino N., Duncan D.R., Nalbandian A., Yi T., Qyang Y., Shinoka T., Breuer C.K. Evaluation of the use of an induced puripotent stem cell sheet for the construction of tissue-engineered vascular grafts. J. Thorac. Cardiovasc. Surg. 2012;143:696–703. doi: 10.1016/j.jtcvs.2011.06.046. PubMed DOI PMC
Simara P., Motl J.A., Kaufman D.S. Pluripotent stem cells and gene therapy. Transl. Res. 2013;161:284–292. doi: 10.1016/j.trsl.2013.01.001. PubMed DOI PMC
Nakayama K.H., Joshi P.A., Lai E.S., Gujar P., Joubert L.M., Chen B., Huang N.F. Bilayered vascular graft derived from human induced pluripotent stem cells with biomimetic structure and function. Regen. Med. 2015;10:745–755. doi: 10.2217/rme.15.45. PubMed DOI PMC
Bao X., Lian X., Dunn K.K., Shi M., Han T., Qian T., Bhute V.J., Canfield S.G., Palecek S.P. Chemically-defined albumin-free differentiation of human pluripotent stem cells to endothelial progenitor cells. Stem Cell Res. 2015;15:122–129. doi: 10.1016/j.scr.2015.05.004. PubMed DOI PMC
Prasain N., Lee M.R., Vemula S., Meador J.L., Yoshimoto M., Ferkowicz M.J., Fett A., Gupta M., Rapp B.M., Saadatzadeh M.R., et al. Differentiation of human pluripotent stem cells to cells similar to cord-blood endothelial colony-forming cells. Nat. Biotechnol. 2014;32:1151–1157. doi: 10.1038/nbt.3048. PubMed DOI PMC
Simara P., Tesarova L., Rehakova D., Farkas S., Salingova B., Kutalkova K., Vavreckova E., Matula P., Matula P., Veverkova L., et al. Reprogramming of adult peripheral blood cells into human induced pluripotent stem cells as a safe and accessible source of endothelial cells. Stem Cells Dev. 2017;27:10–22. doi: 10.1089/scd.2017.0132. PubMed DOI PMC
Orlova V.V., Drabsch Y., Freund C., Petrus-Reurer S., van den Hil F.E., Muenthaisong S., Dijke P.T., Mummery C.L. Functionality of endothelial cells and pericytes from human pluripotent stem cells demonstrated in cultured vascular plexus and zebrafish xenografts. Arter. Thromb. Vasc. Biol. 2014;34:177–186. doi: 10.1161/ATVBAHA.113.302598. PubMed DOI
Samuel R., Daheron L., Liao S., Vardam T., Kamoun W.S., Batista A., Buecker C., Schäfer R., Han X., Au P., et al. Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells. Proc. Natl. Acad. Sci. USA. 2013;110:12774–12779. doi: 10.1073/pnas.1310675110. PubMed DOI PMC
Ali A., Zafar H., Zia M., Ul Haq I., Phull A.R., Ali J.S., Hussain A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 2016;9:49–67. doi: 10.2147/NSA.S99986. PubMed DOI PMC
Anselmo A.C., Mitragotri S. Nanoparticles in the clinic. Bioeng. Transl. Med. 2016;1:10–29. doi: 10.1002/btm2.10003. PubMed DOI PMC
Chen R., Yu H., Jia Z.Y., Yao Q.L., Teng G.J. Efficient nano iron particle-labeling and noninvasive MR imaging of mouse bone marrow-derived endothelial progenitor cells. Int. J. Nanomed. 2011;6:511–519. doi: 10.2147/IJN.S16934. PubMed DOI PMC
Soenen S.J., Himmelreich U., Nuytten N., De Cuyper M. Cytotoxic effects of iron oxide nanoparticles and implications for safety in cell labelling. Biomaterials. 2011;32:195–205. doi: 10.1016/j.biomaterials.2010.08.075. PubMed DOI
Castaneda R.T., Khurana A., Khan R., Daldrup-Link H.E. Labeling stem cells with ferumoxytol, an FDA-approved iron oxide nanoparticle. J. Vis. Exp. Jove. 2011;57:e3482. doi: 10.3791/3482. PubMed DOI PMC
Bogart L.K., Pourroy G., Murphy C.J., Puntes V., Pellegrino T., Rosenblum D., Peer D., Lévy R. Nanoparticles for imaging, sensing, and therapeutic intervention. ACS Nano. 2014;8:3107–3122. doi: 10.1021/nn500962q. PubMed DOI PMC
Rejman J., Oberle V., Zuhorn I.S., Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 2004;377:159–169. doi: 10.1042/bj20031253. PubMed DOI PMC
Calero M., Gutiérrez L., Salas G., Luengo Y., Lázaro A., Acedo P., Morales M.P., Miranda R., Villanueva A. Efficient and safe internalization of magnetic iron oxide nanoparticles: two fundamental requirements for biomedical applications. Nanomedicine. 2014;10:733–743. doi: 10.1016/j.nano.2013.11.010. PubMed DOI
Kettler K., Veltman K., van de Meent D., van Wezel A., Hendriks A.J. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ. Toxicol. Chem. 2014;33:481–492. doi: 10.1002/etc.2470. PubMed DOI
Mahmoudi M., Simchi A., Imani M., Shokrgozar M.A., Milani A.S., Häfeli U.O., Stroeve P. A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids Surf. B Biointerfaces. 2010;75:300–309. doi: 10.1016/j.colsurfb.2009.08.044. PubMed DOI
Bashir M.R., Bhatti L., Marin D., Nelson R.C. Emerging applications for ferumoxytol as a contrast agent in MRI. J. Magn. Reson. Imaging. 2015;41:884–898. doi: 10.1002/jmri.24691. PubMed DOI
Shahnaz G., Kremser C., Reinisch A., Vetter A., Laffleur F., Rahmat D., Iqbal J., Dünnhaupt S., Salvenmoser W., Tessadri R., et al. Efficient MRI labeling of endothelial progenitor cells: design of thiolated surface stabilized superparamagnetic iron oxide nanoparticles. Eur. J. Pharm. Biopharm. 2013;85:346–355. doi: 10.1016/j.ejpb.2013.02.010. PubMed DOI
Wei M.Q., Wen D.D., Wang X.Y., Huan Y., Yang Y., Xu J., Cheng K., Zheng M.W. Experimental study of endothelial progenitor cells labeled with superparamagnetic iron oxide in vitro. Mol. Med. Rep. 2015;11:3814–3819. doi: 10.3892/mmr.2014.3122. PubMed DOI
Nguyen V.H., Lee B.-J. Protein corona: A new approach for nanomedicine design. Int. J. Nanomed. 2017;12:3137–3151. doi: 10.2147/IJN.S129300. PubMed DOI PMC
Carril M., Padro D., del Pino P., Carrillo-Carrion C., Gallego M., Parak W.J. In situ detection of the protein corona in complex environments. Nat. Commun. 2017;8:1542. doi: 10.1038/s41467-017-01826-4. PubMed DOI PMC
Wang F., Yu L., Monopoli M.P., Sandin P., Mahon E., Salvati A., Dawson K.A. The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomed. Nanotechnol. Biol. Med. 2013;9:1159–1168. doi: 10.1016/j.nano.2013.04.010. PubMed DOI
Conner S.D., Schmid S.L. Regulated portals of entry into the cell. Nature. 2003;422:37–44. doi: 10.1038/nature01451. PubMed DOI
Behzadi S., Serpooshan V., Tao W., Hamaly M.A., Alkawareek M.Y., Dreaden E.C., Brown D., Alkilany A.M., Farokhzad O.C., Mahmoudi M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017;46:4218–4244. doi: 10.1039/C6CS00636A. PubMed DOI PMC
Zhang S., Li J., Lykotrafitis G., Bao G., Suresh S. Size-Dependent Endocytosis of Nanoparticles. Adv Mater. 2009;21:419–424. doi: 10.1002/adma.200801393. PubMed DOI PMC
Roth T.F., Porter K.R. Yolk protein uptake in the oocyte of the mosquito Aedes aegypti. L. J. Cell Biol. 1964;20:313–332. doi: 10.1083/jcb.20.2.313. PubMed DOI PMC
Zhang S., Gao H., Bao G. Physical Principles of Nanoparticle Cellular Endocytosis. ACS Nano. 2015;9:8655–8671. doi: 10.1021/acsnano.5b03184. PubMed DOI PMC
Hanini A., Schmitt A., Kacem K., Chau F., Ammar S., Gavard J. Evaluation of iron oxide nanoparticle biocompatibility. Int. J. Nanomed. 2011;6:787–794. PubMed PMC
Singh N., Jenkins G.J., Asadi R., Doak S.H. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION) Nano Rev. 2010;1 doi: 10.3402/nano.v1i0.5358. PubMed DOI PMC
Buyukhatipoglu K., Clyne A.M. Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation. J. Biomed. Mater. Res. A. 2011;96:186–195. doi: 10.1002/jbm.a.32972. PubMed DOI
Pongrac I.M., Pavičić I., Milić M., Brkić Ahmed L., Babič M., Horák D., Vinković Vrček I., Gajović S. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles. Int. J. Nanomed. 2016;11:1701–1715. PubMed PMC
Zhu X.M., Wang Y.X., Leung K.C., Lee S.F., Zhao F., Wang D.W., Lai J.M., Wan C., Cheng C.H., Ahuja A.T. Enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines. Int. J. Nanomed. 2012;7:953–964. PubMed PMC
Clift M.J.D., Bhattacharjee S., Brown D.M., Stone V. The effects of serum on the toxicity of manufactured nanoparticles. Toxicol. Lett. 2010;198:358–365. doi: 10.1016/j.toxlet.2010.08.002. PubMed DOI
Arbab A.S., Yocum G.T., Rad A.M., Khakoo A.Y., Fellowes V., Read E.J., Frank J.A. Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. NMR Biomed. 2005;18:553–559. doi: 10.1002/nbm.991. PubMed DOI
Kostura L., Kraitchman D.L., Mackay A.M., Pittenger M.F., Bulte J.W. Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed. 2004;17:513–517. doi: 10.1002/nbm.925. PubMed DOI
Zeng G., Wang G., Guan F., Chang K., Jiao H., Gao W., Xi S., Yang B. Human amniotic membrane-derived mesenchymal stem cells labeled with superparamagnetic iron oxide nanoparticles: The effect on neuron-like differentiation in vitro. Mol. Cell. Biochem. 2011;357:331–341. doi: 10.1007/s11010-011-0904-4. PubMed DOI
Chen Y.C., Hsiao J.K., Liu H.M., Lai I.Y., Yao M., Hsu S.C., Ko B.S., Yang C.S., Huang D.M. The inhibitory effect of superparamagnetic iron oxide nanoparticle (Ferucarbotran) on osteogenic differentiation and its signaling mechanism in human mesenchymal stem cells. Toxicol. Appl. Pharm. 2010;245:272–279. doi: 10.1016/j.taap.2010.03.011. PubMed DOI
Au K.W., Liao S.Y., Lee Y.K., Lai W.H., Ng K.M., Chan Y.C., Yip M.C., Ho C.Y., Wu E.X., Li R.A., et al. Effects of iron oxide nanoparticles on cardiac differentiation of embryonic stem cells. Biochem. Biophys. Res. Commun. 2009;379:898–903. doi: 10.1016/j.bbrc.2008.12.160. PubMed DOI
Šimara P., Tesařová L., Padourová S., Koutná I. Generation of human induced pluripotent stem cells using genome integrating or non-integrating methods. Folia Biol. Praha. 2014;60(Suppl. S1):85–89. PubMed
Simara P., Tesarova L., Rehakova D., Matula P., Stejskal S., Hampl A., Koutna I. DNA double-strand breaks in human induced pluripotent stem cell reprogramming and long-term in vitro culturing. Stem Cell Res. 2017;8:73. doi: 10.1186/s13287-017-0522-5. PubMed DOI PMC
Orlova V.V., van den Hil F.E., Petrus-Reurer S., Drabsch Y., Ten Dijke P., Mummery C.L. Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells. Nat. Protoc. 2014;9:1514–1531. doi: 10.1038/nprot.2014.102. PubMed DOI
Synek P., Jasek O., Zajickova L. Study of Microwave Torch Plasmachemical Synthesis of Iron Oxide Nanoparticles Focused on the Analysis of Phase Composition. Plasma Chem. Plasma Process. 2014;34:327–341. doi: 10.1007/s11090-014-9520-x. DOI
Synek P., Jasek O., Zajickova L., Kudrle V., Pizurova N. Plasmachemical synthesis of maghemite nanoparticles in atmospheric pressure microwave torch. Mater. Lett. 2011;65:982–984. doi: 10.1016/j.matlet.2010.12.048. DOI
de Faria D.L.A., Venâncio S.S., de Oliveira M.T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Rom. Spectrosc. 1997;28:873–878. doi: 10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-B. DOI