• This record comes from PubMed

Drought Tolerance of Soybean (Glycine max L. Merr.) by Improved Photosynthetic Characteristics and an Efficient Antioxidant Enzyme Activities Under a Split-Root System

. 2019 ; 10 () : 786. [epub] 20190703

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Water deficiency significantly affects photosynthetic characteristics. However, there is little information about variations in antioxidant enzyme activities and photosynthetic characteristics of soybean under imbalanced water deficit conditions (WDC). We therefore investigated the changes in photosynthetic and chlorophyll fluorescence characteristics, total soluble protein, Rubisco activity (RA), and enzymatic activities of two soybean varieties subjected to four different types of imbalanced WDC under a split-root system. The results indicated that the response of both cultivars was significant for all the measured parameters and the degree of response differed between cultivars under imbalanced WDC. The maximum values of enzymatic activities (SOD, CAT, GR, APX, and POD), chlorophyll fluorescence (Fv/Fm, qP, ɸPSII, and ETR), proline, RA, and total soluble protein were obtained with a drought-tolerant cultivar (ND-12). Among imbalanced WDC, the enhanced net photosynthesis, transpiration, and stomatal conductance rates in T2 allowed the production of higher total soluble protein after 5 days of stress, which compensated for the negative effects of imbalanced WDC. Treatment T4 exhibited greater potential for proline accumulation than treatment T1 at 0, 1, 3, and 5 days after treatment, thus showing the severity of the water stress conditions. In addition, the chlorophyll fluorescence values of FvFm, ɸPSII, qP, and ETR decreased as the imbalanced WDC increased, with lower values noted under treatment T4. Soybean plants grown in imbalanced WDC (T2, T3, and T4) exhibited signs of oxidative stress such as decreased chlorophyll content. Nevertheless, soybean plants developed their antioxidative defense-mechanisms, including the accelerated activities of these enzymes. Comparatively, the leaves of soybean plants in T2 displayed lower antioxidative enzymes activities than the leaves of T4 plants showing that soybean plants experienced less WDC in T2 compared to in T4. We therefore suggest that appropriate soybean cultivars and T2 treatments could mitigate abiotic stresses under imbalanced WDC, especially in intercropping.

See more in PubMed

Ahmad P., Jaleel C. A., Salem M. A., Nabi G., Sharma S. (2010). Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 30, 161–175. 10.3109/07388550903524243, PMID: PubMed DOI

Bates L. S., Waldren R. P., Teare I. (1973). Rapid determination of free proline for water-stress studies. Plant Soil 39, 205–207. 10.1007/BF00018060 DOI

Batra N. G., Sharma V., Kumari N. (2014). Drought-induced changes in chlorophyll fluorescence, photosynthetic pigments, and thylakoid membrane proteins of Vigna radiata. J. Plant Interact. 9, 712–721. 10.1080/17429145.2014.905801 DOI

Beis A., Patakas A. (2015). Differential physiological and biochemical responses to drought in grapevines subjected to partial root drying and deficit irrigation. Eur. J. Agron. 62, 90–97. 10.1016/j.eja.2014.10.001 DOI

Bota J., Medrano H., Flexas J. (2004). Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytol. 162, 671–681. 10.1111/j.1469-8137.2004.01056.x PubMed DOI

Campos H., Trejo C., Pena-Valdivia C. B., Ramírez-Ayala C., Sánchez-García P. (2009). Effect of partial rootzone drying on growth, gas exchange, and yield of tomato (Solanum lycopersicum L.). Sci. Hortic. 120, 493–499. 10.1016/j.scienta.2008.12.014 DOI

Chaves M. M., Flexas J., Pinheiro C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot. 103, 551–560. 10.1093/aob/mcn125, PMID: PubMed DOI PMC

Dai Y., Shen Z., Liu Y., Wang L., Hannaway D., Lu H. (2009). Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environ. Exp. Bot. 65, 177–182. 10.1016/j.envexpbot.2008.12.008 DOI

Evans J. R., Seemann J. R. (1989). “The allocation of protein nitrogen in the photosynthetic apparatus: costs, consequences, and control” in Photosynthesis. ed. Briggs W. R. (New York: Alan R. Liss, Inc.), 183–205.

Fan H., Ding L., Xu Y., Du C. (2017). Antioxidant system and photosynthetic characteristics responses to short-term PEG-induced drought stress in cucumber seedling leaves. Russ. J. Plant Physiol. 64, 162–173. 10.1134/S1021443717020042 DOI

Flexas J., Ribas-Carbó M., Bota J., Galmés J., Henkle M., Martínez-Cañellas S., et al. . (2006). Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytol. 172, 73–82. 10.1111/j.1469-8137.2006.01794.x, PMID: PubMed DOI

Galmés J., Ribas-Carbó M., Medrano H., Flexas J. (2011). Rubisco activity in Mediterranean species is regulated by the chloroplastic CO2 concentration under water stress. J. Exp. Bot. 62, 653–665. 10.1093/jxb/erq303 PubMed DOI PMC

Grassi G., Magnani F. (2005). Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ. 28, 834–849. 10.1111/j.1365-3040.2005.01333.x DOI

Gunes A., Inal A., Adak M., Bagci E., Cicek N., Eraslan F. (2008). Effect of drought stress implemented at pre-or post-anthesis stage on some physiological parameters as screening criteria in chickpea cultivars. Russ. J. Plant Physiol. 55, 59–67. 10.1134/S102144370801007X DOI

Guo Y., Tian S., Liu S., Wang W., Sui N. (2018). Energy dissipation and antioxidant enzyme system protect photosystem II of sweet sorghum under drought stress. Photosynthetica 56, 1–12. 10.1007/s11099-017-0741-0 DOI

Hajihashemi S., Ehsanpour A. A. (2013). Influence of exogenously applied paclobutrazol on some physiological traits and growth of Stevia rebaudiana under in vitro drought stress. Biologia 68, 414–420. 10.2478/s11756-013-0165-7 DOI

Heerden P. D. R. V., Kruger G. H. J. (2002). Separately and simultaneously induced dark chilling and drought stress effects on photosynthesis, proline accumulation and antioxidant metabolism in soybean. J. Plant Physiol. 159, 1077–1086. 10.1078/0176-1617-00745 DOI

Hussain S., Iqbal N., Brestic M., Raza M. A., Pang T., Langham D. R., et al. . (2019). Changes in morphology, chlorophyll fluorescence performance and Rubisco activity of soybean in response to foliar application of ionic titanium under normal light and shade environment. Sci. Total Environ. 658, 626–637. 10.1016/j.scitotenv.2018.12.182, PMID: PubMed DOI

Iqbal N., Hussain S., Ahmed Z., Yang F., Wang X., Liu W., et al. (2018a). Comparative analysis of maize–soybean strip intercropping systems: a review. Plant Prod. Sci. 22, 1–12. 10.1080/1343943X.2018.1541137 DOI

Iqbal N., Hussain S., Raza M. A., Safdar M. E., Hayyat M. S., Shafiq I., et al. (2019). Exploring half root-stress approach: current knowledge and future prospects. Plant Prod. Sci. 1–11. 10.1080/1343943X.2019.1604145 (just-accepted) DOI

Iqbal N., Hussain S., Zhang X.-W., Yang C.-Q., Raza M. A., Deng J.-C., et al. (2018b). Imbalance water deficit improves the seed yield and quality of soybean. Agronomy 8:168. 10.3390/agronomy8090168 DOI

Kalaji H., Rastogi A., Živčák M., Brestic M., Daszkowska-Golec A., Sitko K., et al. (2018). Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. Photosynthetica 56, 953–961. 10.1007/s11099-018-0766-z DOI

Kalaji H. M., Schansker G., Ladle R. J., Goltsev V., Bosa K., Allakhverdiev S. I., et al. . (2014). Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth. Res. 122, 121–158. 10.1007/s11120-014-0024-6, PMID: PubMed DOI PMC

Lawlor D. W., Tezara W. (2009). Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann. Bot. 103, 561–579. 10.1093/aob/mcn244, PMID: PubMed DOI PMC

Liu X., Rahman T., Song C., Su B., Yang F., Yong T., et al. (2017a). Changes in light environment, morphology, growth and yield of soybean in maize-soybean intercropping systems. Field Crop Res. 200, 38–46. 10.1016/j.fcr.2016.10.003 DOI

Liu Y., Song Q., Li D., Yang X., Li D. (2017b). Multifunctional roles of plant dehydrins in response to environmental stresses. Front. Plant Sci. 8:1018. 10.3389/fpls.2017.01018 PubMed DOI PMC

Mao H., Chen M., Su Y., Wu N., Yuan M., Yuan S., et al. . (2018). Comparison on photosynthesis and antioxidant defense systems in wheat with different ploidy levels and octoploid triticale. Int. J. Mol. Sci. 19:3006. 10.3390/ijms19103006, PMID: PubMed DOI PMC

Masoumi H., Masoumi M., Darvish F., Daneshian J., Nourmohammadi G., Habibi D. (2010). Change in several antioxidant enzymes activity and seed yield by water deficit stress in soybean (Glycine max L.) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38, 86–94. 10.15835/nbha3834936 DOI

Mingo D. M., Theobald J. C., Bacon M. A., Davies W. J., Dodd I. C. (2004). Biomass allocation in tomato (Lycopersicon esculentum) plants grown under partial rootzone drying: enhancement of root growth. Funct. Plant Biol. 31, 971–978. 10.1071/FP04020 PubMed DOI

Olechowicz J., Chomontowski C., Olechowicz P., Pietkiewicz S., Jajoo A., Kalaji M. (2018). Impact of intraspecific competition on photosynthetic apparatus efficiency in potato (Solanum tuberosum) plants. Photosynthetica 56, 971–975. 10.1007/s11099-017-0728-x DOI

Pan Y., Lu Z., Lu J., Li X., Cong R., Ren T. (2017). Effects of low sink demand on leaf photosynthesis under potassium deficiency. Plant Physiol. Biochem. 113, 110–121. 10.1016/j.plaphy.2017.01.027, PMID: PubMed DOI

Pan Y., Wu L. J., Yu Z. L. (2006). Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul. 49, 157–165. 10.1007/s10725-006-9101-y DOI

Pei Z.-M., Murata Y., Benning G., Thomine S., Klüsener B., Allen G. J., et al. . (2000). Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406, 731–734. 10.1038/35021067, PMID: PubMed DOI

Pietrini F., Iannelli M. A., Pasqualini S., Massacci A. (2003). Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. Ex Steudel. Plant Physiol. 133, 829–837. 10.1104/pp.103.026518, PMID: PubMed DOI PMC

Piper F. I., Corcuera L. J., Alberdi M., Lusk C. (2007). Differential photosynthetic and survival responses to soil drought in two evergreen Nothofagus species. Ann. For. Sci. 64, 447–452. 10.1051/forest:2007022 DOI

Prasad A., Kumar A., Suzuki M., Kikuchi H., Sugai T., Kobayashi M., et al. . (2015). Detection of hydrogen peroxide in photosystem II (PSII) using catalytic amperometric biosensor. Front. Plant Sci. 6:862. 10.3389/fpls.2015.00862, PMID: PubMed DOI PMC

Prasad A., Sedlářová M., Pospíšil P. (2018). Singlet oxygen imaging using fluorescent probe singlet oxygen sensor green in photosynthetic organisms. Sci. Rep. 8:13685. 10.1038/s41598-018-31638-5, PMID: PubMed DOI PMC

Rahbarian R., Khavari-Nejad R., Ganjeali A., Bagheri A., Najafi F. (2011). Drought stress effects on photosynthesis, chlorophyll fluorescence and water relations in tolerant and susceptible chickpea (Cicer arietinum L.) genotypes. Acta Biol. Cracov. Ser. Bot. 53, 47–56. 10.2478/v10182-011-0007-2 DOI

Rahman T., Ye L., Liu X., Iqbal N., Du J., Gao R., et al. (2016). Water use efficiency and water distribution response to different planting patterns in maize–soybean relay strip intercropping systems. Exp. Agric. 53, 1–19. 10.1017/S0014479716000260 DOI

Raza M., Feng L., Iqbal N., Manaf A., Khalid M., Wasaya A., et al. (2018a). Effect of sulphur application on photosynthesis and biomass accumulation of sesame varieties under rainfed conditions. Agronomy 8:149. 10.3390/agronomy8080149 DOI

Raza M. A., Feng L. Y., Manaf A., Wasaya A., Ansar M., Hussain A., et al. (2018b). Sulphur application increases seed yield and oil content in sesame seeds under rainfed conditions. Field Crop Res. 218, 51–58. 10.1016/j.fcr.2017.12.024 DOI

Sharma P., Jha A., Dubey R., Pessarakli M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 1–26. 10.1155/2012/217037 DOI

Shen X., Dong Z., Chen Y. (2015). Drought and UV-B radiation effect on photosynthesis and antioxidant parameters in soybean and maize. Acta Physiol. Plant. 37:25. 10.1007/s11738-015-1778-y DOI

Shen X., Zhou Y., Duan L., Li Z., Eneji A. E., Li J. (2010). Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J. Plant Physiol. 167, 1248–1252. 10.1016/j.jplph.2010.04.011, PMID: PubMed DOI

Siddique Z., Jan S., Imadi S. R., Gul A., Ahmad P. (2016). “Drought stress and photosynthesis in plants” in Water stress and crop plants: A sustainable approach 2. ed. Ahmad P., 1–11. 10.1002/9781119054450.ch1 DOI

Sinha R. K., Pospíšil P., Maheshwari P., Eudes F. (2016). Bcl-2△ 21 and Ac-DEVD-CHO inhibit death of wheat microspores. Front. Plant Sci. 7:1931. 10.3389/fpls.2016.01931, PMID: PubMed DOI PMC

Susana R.-G., Enrique M.-N., Anthony J. D., Francisco F.-M., Elloy M. C., Teresa L., et al. (2007). Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides. Ann. Bot. 100, 555–563. 10.1093/aob/mcm119 PubMed DOI PMC

Tardieu F. (2016). Too many partners in root–shoot signals. Does hydraulics qualify as the only signal that feeds back over time for reliable stomatal control? New Phytol. 212, 802–804. 10.1111/nph.14292, PMID: PubMed DOI

Türkan I., Bor M., Özdemir F., Koca H. (2005). Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci. 168, 223–231. 10.1016/j.plantsci.2004.07.032 DOI

Wang W., Wang C., Pan D., Zhang Y., Luo B., Ji J. (2018). Effects of drought stress on photosynthesis and chlorophyll fluorescence images of soybean (Glycine max) seedlings. Int. J. Agric. & Biol. Eng 11, 196–201. 10.25165/j.ijabe.20181102.3390 DOI

Wu Y., Gong W., Wang Y., Yong T., Yang F., Liu W., et al. (2018). Leaf area and photosynthesis of newly emerged trifoliolate leaves are regulated by mature leaves in soybean. J. Plant Res. 131, 1–10. 10.1007/s10265-018-1027-8 PubMed DOI

Yan Y., Gong W., Yang W., Wan Y., Chen X., Chen Z., et al. (2010). Seed treatment with uniconazole powder improves soybean seedling growth under shading by corn in relay strip intercropping system. Plant Prod. Sci. 13, 367–374. 10.1626/pps.13.367 DOI

Yan J., Tsuichihara N., Etoh T., Iwai S. (2007). Reactive oxygen species and nitric oxide are involved in ABA inhibition of stomatal opening. Plant Cell Environ. 30, 1320–1325. 10.1111/j.1365-3040.2007.01711.x, PMID: PubMed DOI

Yao X., Li C., Li S., Zhu Q., Zhang H., Wang H., et al. (2017). Effect of shade on leaf photosynthetic capacity, light-intercepting, electron transfer and energy distribution of soybeans. Plant Growth Regul. 83, 409–416. 10.1007/s10725-017-0307-y DOI

Zhang D., Tong J., He X., Xu Z., Xu L., Wei P., et al. (2016). A novel soybean intrinsic protein gene, GmTIP2; 3, involved in responding to osmotic stress. Front. Plant Sci. 6:1237. 10.3389/fpls.2015.01237 PubMed DOI PMC

Zivcak M., Brestic M., Balatova Z., Drevenakova P., Olsovska K., Kalaji H. M., et al. . (2013). Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynth. Res. 117, 529–546. 10.1007/s11120-013-9885-3, PMID: PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...