Dihydrogen Bond in the Aminoborane Complex of a Nicergoline Intermediate

. 2019 Jul 12 ; 24 (14) : . [epub] 20190712

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31336918

Grantová podpora
17-02836S Grantová Agentura České Republiky

An aminoborane side product from the nicergoline manufacture process was identified by single-crystal X-ray diffraction. As boranes of pharmaceutical molecules are quite rare, the binding potential of the BH3 group was investigated and compared with similar compounds using Cambridge Structural Database (CSD). Surprisingly, the packing was stabilized by a dihydrogen bond, which triggered a false alert for too-short contact of hydrogen atoms in IUCR checkCIF. As the dihydrogen bond concept is not widely known, such an alert might mislead crystallographers to force -CH3 optimal geometry to -BH3 groups. The B-H distances equal to or less than 1.0 Å (17% of the CSD structures) are substantially biased when analyzing the structures of aminoborane complexes in CSD. To conduct proper searching, B-H bond length normalization should be applied in the CSD search.

Zobrazit více v PubMed

Schweitzer B.A., Egholm M., Koch T.H. Mechanistic studies of the reduction of daunomycin with sodium borohydride. Formation and reaction of borate esters. J. Am. Chem. Soc. 1992;114:242–248. doi: 10.1021/ja00027a031. DOI

Liu Q., Xiong F.-J., He Q.-Q., Chen F.-E. Development of an Efficient Process for the Decomposition of the Borate Complexes Formed during the Large-Scale Synthesis of (S)-1,2,4-Butanetriol. Org. Process Res. Dev. 2013;17:1540–1542. doi: 10.1021/op400271k. DOI

Niedenzu K., Dawson J.W. Boron-Nitrogen Compounds. III.1,2 Aminoboranes, Part 2: The B-N Bond Character in Substituted Aminoboranes. J. Am. Chem. Soc. 1960;82:4223–4228. doi: 10.1021/ja01501a028. DOI

Narayana C., Periasamy M. Hydroboration of prochiral olefins with chiral Lewis base–borane complexes: Relationship to the mechanism of hydroboration. J. Chem. Soc. Chem. Commun. 1987:1857–1859. doi: 10.1039/C39870001857. DOI

Le Toumelin J.-B., Baboulène M. Chiral intramolecular amine-borane complexes as reducing agents for prochiral ketones. Tetrahedron Asymmetry. 1997;8:1259–1265. doi: 10.1016/S0957-4166(97)00093-1. DOI

Burkhardt E.R., Matos K. Boron Reagents in Process Chemistry: Excellent Tools for Selective Reductions. Chem. Rev. 2006;106:2617–2650. doi: 10.1021/cr0406918. PubMed DOI

Hisaki I., Shizuki N., Sasaki T., Ito Y., Tohnai N., Miyata M. Handedness Determination of 21 Helical Motifs and Hierarchical Analysis of Crystal Structures Based on the Motifs: The Case of Cinchona Alkaloid Derivatives. Cryst. Growth Des. 2010;10:5262–5269. doi: 10.1021/cg101111f. DOI

Hodgkin D.C. The X-ray Analysis of Complicated Molecules. Science. 1965;150:979–988. doi: 10.1126/science.150.3699.979. PubMed DOI

Crabtree R.H., Siegbahn P.E.M., Eisenstein O., Rheingold A.L., Koetzle T.F. A New Intermolecular Interaction:  UnconventionalHydrogen Bonds with Element−Hydride Bonds as ProtonAcceptor. Acc. Chem. Res. 1996;29:348–354. doi: 10.1021/ar950150s. PubMed DOI

Desiraju G.R., Steiner T. The Weak Hydrogen Bond: In Structural Chemistry and Biology. Oxford University Press; Oxford, UK: 2001. International Union of Crystallography monographs on crystallography. first publ. in paperback.

Bakhmutov V.I. Dihydrogen Bonds: Principles, Experiments, and Applications. Wiley-Interscience; Hoboken, NJ, USA: 2008.

Čejka J., Kratochvíl B., Cvak L., Jegorov A. Crystal structure of 1-hydroxymethyl-10α-methoxy-9,10-dihydrolysergol, C18H24N2O3. Z. Krist. New Cryst. Struct. 2005;220:371–372. doi: 10.1524/ncrs.2005.220.14.371. DOI

Čejka J., Kratochvíl B., Cvak L., Jegorov A. Crystal structure of 1-methyl-10α-methoxy-9,10-dihydrolysergol, C18H24N2O2. Z. Krist. New Cryst. Struct. 2005;220:217–218. doi: 10.1524/ncrs.2005.220.14.217. DOI

Discovery Studio Modeling Environment. Dassault Systèmes; San Diego, CA, USA: 2016. Dassault Systèmes BIOVIA.

Cremer D., Pople J.A. General definition of ring puckering coordinates. J. Am. Chem. Soc. 1975;97:1354–1358. doi: 10.1021/ja00839a011. DOI

Flores-Parra A., Sánchez-Ruiz S.A., Guadarrama C., Nöth H., Contreras R. BHδ—δ+HC Interactions in N-Borane and N-Chloroborane Adducts Derived from 1,3,5-Heterocyclohexanes. Eur. J. Inorg. Chem. 1999;1999:2069–2073. doi: 10.1002/(SICI)1099-0682(199911)1999:11<2069::AID-EJIC2069>3.0.CO;2-B. DOI

Peters K., Peters E.-M., Drinkuth S., Groetsch S., Christi M. Crystal structure of (la,5β,8β,8aβ)-1-methyl-1,2,3,5,8,8a-hexahydro-5,8- epoxychinolin(N-B)boran, C9H10NO(CH3)(BH3) Z. Krist. New Cryst. Struct. 2000;215:600–602. doi: 10.1515/ncrs-2000-0462. DOI

Peters E.-M., Peters K., Groetsch S., Christi M. Crystal structure of (1α,2ß,8α)-2-methyl-8-phenyl-2-azabicyclo[4.2.0]oct- 5-ene(N-B)boran, (C6H5)C7H9N(CH3)(BH3) Z. Krist. New Cryst. Struct. 2001;216:121–122. doi: 10.1524/ncrs.2001.216.14.121. DOI

Kawaguchi K. Fourier transform infrared spectroscopy of the BH3 ν3 band. J. Chem. Phys. 1992;96:3411–3415. doi: 10.1063/1.461942. DOI

Jones D.S., Lipscomb W.N. Analysis of diborane X-ray diffraction data utilizing structure factors calculated from molecular wave functions. Acta Crystallogr. Sect. A. 1970;26:196–207. doi: 10.1107/S0567739470000554. DOI

Milovanović M.M., Andrić J.M., Medaković V.B., Djukic J.-P., Zarić S.D. Investigation of interactions in Lewis pairs between phosphines and boranes by analyzing crystal structures from the Cambridge Structural Database. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2018;74:255–263. doi: 10.1107/S2052520618003736. PubMed DOI

Spek A.L. Structure validation in chemical crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2009;65:148–155. doi: 10.1107/S090744490804362X. PubMed DOI PMC

Spek A.L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003;36:7–13. doi: 10.1107/S0021889802022112. DOI

Bruno I.J., Cole J.C., Edgington P.R., Kessler M., Macrae C.F., McCabe P., Pearson J., Taylor R. New software for searching the Cambridge Structural Database and visualizing crystal structures. Acta Crystallogr. Sect. B Struct. Sci. 2002;58:389–397. doi: 10.1107/S0108768102003324. PubMed DOI

Blakemore P.R., Kim S.-K., Schulze V.K., White J.D., Yokochi A.F.T. Asymmetric synthesis of (+)-loline, a pyrrolizidine alkaloid from rye grass and tall fescue. J. Chem. Soc. Perkin Trans. 1. 2001:1831–1847. doi: 10.1039/b103936a. DOI

Groselj U., Bevk D., Jakse R., Meden A., Stanovnik B., Svete J. CCDC 286431: Experimental Crystal Structure Determination. The Cambridge Crystallographic Data Centre; Cambridge, UK: 2006.

White J.M., McClure M.S. CCDC 1026489: Experimental Crystal Structure Determination. The Cambridge Crystallographic Data Centre; Cambridge, UK: 2014.

Gainsford G.J., Luxenburger A., Woolhouse A.D. CCDC 790649: Experimental Crystal Structure Determination. The Cambridge Crystallographic Data Centre; Cambridge, UK: 2010.

Pinaka A., Vougioukalakis G., Dimotikali D., Psyharis V., Papadopoulos K. A Convenient One-Step Synthesis of Stable β-Amino Alcohol N-Boranes from α-Amino Acids. Synthesis. 2012;44:1057–1062. doi: 10.1002/chin.201231208. DOI

Apex 3, Saint. Bruker AXS Inc.; Madison, WI, USA: 2016.

Altomare A., Cascarano G., Giacovazzo C., Guagliardi A., Burla M.C., Polidori G., Camalli M. SIR92—A program for automatic solution of crystal structures by direct methods. J. Appl. Cryst. 1994;27:435. doi: 10.1107/S002188989400021X. DOI

Betteridge P.W., Carruthers J.R., Cooper R.I., Prout K., Watkin D.J. CRYSTALS version 12: Software for guided crystal structure analysis. J. Appl. Cryst. 2003;36:1487. doi: 10.1107/S0021889803021800. DOI

Macrae C.F., Bruno I.J., Chisholm J.A., Edgington P.R., McCabe P., Pidcock E., Rodriguez-Monge L., Taylor R., Streek J.V.D., Wood P.A. Mercury CSD 2.0—New features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008;41:466–470. doi: 10.1107/S0021889807067908. DOI

Hooft R.W.W., Straver L.H., Spek A.L. Determination of absolute structure using Bayesian statistics on Bijvoet differences. J. Appl. Cryst. 2008;41:96–103. doi: 10.1107/S0021889807059870. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Heterocycles in Medicinal Chemistry

. 2019 Oct 25 ; 24 (21) : . [epub] 20191025

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...