Dihydrogen Bond in the Aminoborane Complex of a Nicergoline Intermediate
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-02836S
Grantová Agentura České Republiky
PubMed
31336918
PubMed Central
PMC6680414
DOI
10.3390/molecules24142548
PII: molecules24142548
Knihovny.cz E-zdroje
- Klíčová slova
- CSD, X-ray structure, aminoborane, dihydrogen bond, nicergoline, single crystal,
- MeSH
- borany chemie MeSH
- krystalografie rentgenová MeSH
- molekulární konformace MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- nicergolin chemie MeSH
- vodík chemie MeSH
- vodíková vazba * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- borany MeSH
- nicergolin MeSH
- vodík MeSH
An aminoborane side product from the nicergoline manufacture process was identified by single-crystal X-ray diffraction. As boranes of pharmaceutical molecules are quite rare, the binding potential of the BH3 group was investigated and compared with similar compounds using Cambridge Structural Database (CSD). Surprisingly, the packing was stabilized by a dihydrogen bond, which triggered a false alert for too-short contact of hydrogen atoms in IUCR checkCIF. As the dihydrogen bond concept is not widely known, such an alert might mislead crystallographers to force -CH3 optimal geometry to -BH3 groups. The B-H distances equal to or less than 1.0 Å (17% of the CSD structures) are substantially biased when analyzing the structures of aminoborane complexes in CSD. To conduct proper searching, B-H bond length normalization should be applied in the CSD search.
Zobrazit více v PubMed
Schweitzer B.A., Egholm M., Koch T.H. Mechanistic studies of the reduction of daunomycin with sodium borohydride. Formation and reaction of borate esters. J. Am. Chem. Soc. 1992;114:242–248. doi: 10.1021/ja00027a031. DOI
Liu Q., Xiong F.-J., He Q.-Q., Chen F.-E. Development of an Efficient Process for the Decomposition of the Borate Complexes Formed during the Large-Scale Synthesis of (S)-1,2,4-Butanetriol. Org. Process Res. Dev. 2013;17:1540–1542. doi: 10.1021/op400271k. DOI
Niedenzu K., Dawson J.W. Boron-Nitrogen Compounds. III.1,2 Aminoboranes, Part 2: The B-N Bond Character in Substituted Aminoboranes. J. Am. Chem. Soc. 1960;82:4223–4228. doi: 10.1021/ja01501a028. DOI
Narayana C., Periasamy M. Hydroboration of prochiral olefins with chiral Lewis base–borane complexes: Relationship to the mechanism of hydroboration. J. Chem. Soc. Chem. Commun. 1987:1857–1859. doi: 10.1039/C39870001857. DOI
Le Toumelin J.-B., Baboulène M. Chiral intramolecular amine-borane complexes as reducing agents for prochiral ketones. Tetrahedron Asymmetry. 1997;8:1259–1265. doi: 10.1016/S0957-4166(97)00093-1. DOI
Burkhardt E.R., Matos K. Boron Reagents in Process Chemistry: Excellent Tools for Selective Reductions. Chem. Rev. 2006;106:2617–2650. doi: 10.1021/cr0406918. PubMed DOI
Hisaki I., Shizuki N., Sasaki T., Ito Y., Tohnai N., Miyata M. Handedness Determination of 21 Helical Motifs and Hierarchical Analysis of Crystal Structures Based on the Motifs: The Case of Cinchona Alkaloid Derivatives. Cryst. Growth Des. 2010;10:5262–5269. doi: 10.1021/cg101111f. DOI
Hodgkin D.C. The X-ray Analysis of Complicated Molecules. Science. 1965;150:979–988. doi: 10.1126/science.150.3699.979. PubMed DOI
Crabtree R.H., Siegbahn P.E.M., Eisenstein O., Rheingold A.L., Koetzle T.F. A New Intermolecular Interaction: UnconventionalHydrogen Bonds with Element−Hydride Bonds as ProtonAcceptor. Acc. Chem. Res. 1996;29:348–354. doi: 10.1021/ar950150s. PubMed DOI
Desiraju G.R., Steiner T. The Weak Hydrogen Bond: In Structural Chemistry and Biology. Oxford University Press; Oxford, UK: 2001. International Union of Crystallography monographs on crystallography. first publ. in paperback.
Bakhmutov V.I. Dihydrogen Bonds: Principles, Experiments, and Applications. Wiley-Interscience; Hoboken, NJ, USA: 2008.
Čejka J., Kratochvíl B., Cvak L., Jegorov A. Crystal structure of 1-hydroxymethyl-10α-methoxy-9,10-dihydrolysergol, C18H24N2O3. Z. Krist. New Cryst. Struct. 2005;220:371–372. doi: 10.1524/ncrs.2005.220.14.371. DOI
Čejka J., Kratochvíl B., Cvak L., Jegorov A. Crystal structure of 1-methyl-10α-methoxy-9,10-dihydrolysergol, C18H24N2O2. Z. Krist. New Cryst. Struct. 2005;220:217–218. doi: 10.1524/ncrs.2005.220.14.217. DOI
Discovery Studio Modeling Environment. Dassault Systèmes; San Diego, CA, USA: 2016. Dassault Systèmes BIOVIA.
Cremer D., Pople J.A. General definition of ring puckering coordinates. J. Am. Chem. Soc. 1975;97:1354–1358. doi: 10.1021/ja00839a011. DOI
Flores-Parra A., Sánchez-Ruiz S.A., Guadarrama C., Nöth H., Contreras R. BHδ—δ+HC Interactions in N-Borane and N-Chloroborane Adducts Derived from 1,3,5-Heterocyclohexanes. Eur. J. Inorg. Chem. 1999;1999:2069–2073. doi: 10.1002/(SICI)1099-0682(199911)1999:11<2069::AID-EJIC2069>3.0.CO;2-B. DOI
Peters K., Peters E.-M., Drinkuth S., Groetsch S., Christi M. Crystal structure of (la,5β,8β,8aβ)-1-methyl-1,2,3,5,8,8a-hexahydro-5,8- epoxychinolin(N-B)boran, C9H10NO(CH3)(BH3) Z. Krist. New Cryst. Struct. 2000;215:600–602. doi: 10.1515/ncrs-2000-0462. DOI
Peters E.-M., Peters K., Groetsch S., Christi M. Crystal structure of (1α,2ß,8α)-2-methyl-8-phenyl-2-azabicyclo[4.2.0]oct- 5-ene(N-B)boran, (C6H5)C7H9N(CH3)(BH3) Z. Krist. New Cryst. Struct. 2001;216:121–122. doi: 10.1524/ncrs.2001.216.14.121. DOI
Kawaguchi K. Fourier transform infrared spectroscopy of the BH3 ν3 band. J. Chem. Phys. 1992;96:3411–3415. doi: 10.1063/1.461942. DOI
Jones D.S., Lipscomb W.N. Analysis of diborane X-ray diffraction data utilizing structure factors calculated from molecular wave functions. Acta Crystallogr. Sect. A. 1970;26:196–207. doi: 10.1107/S0567739470000554. DOI
Milovanović M.M., Andrić J.M., Medaković V.B., Djukic J.-P., Zarić S.D. Investigation of interactions in Lewis pairs between phosphines and boranes by analyzing crystal structures from the Cambridge Structural Database. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2018;74:255–263. doi: 10.1107/S2052520618003736. PubMed DOI
Spek A.L. Structure validation in chemical crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2009;65:148–155. doi: 10.1107/S090744490804362X. PubMed DOI PMC
Spek A.L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003;36:7–13. doi: 10.1107/S0021889802022112. DOI
Bruno I.J., Cole J.C., Edgington P.R., Kessler M., Macrae C.F., McCabe P., Pearson J., Taylor R. New software for searching the Cambridge Structural Database and visualizing crystal structures. Acta Crystallogr. Sect. B Struct. Sci. 2002;58:389–397. doi: 10.1107/S0108768102003324. PubMed DOI
Blakemore P.R., Kim S.-K., Schulze V.K., White J.D., Yokochi A.F.T. Asymmetric synthesis of (+)-loline, a pyrrolizidine alkaloid from rye grass and tall fescue. J. Chem. Soc. Perkin Trans. 1. 2001:1831–1847. doi: 10.1039/b103936a. DOI
Groselj U., Bevk D., Jakse R., Meden A., Stanovnik B., Svete J. CCDC 286431: Experimental Crystal Structure Determination. The Cambridge Crystallographic Data Centre; Cambridge, UK: 2006.
White J.M., McClure M.S. CCDC 1026489: Experimental Crystal Structure Determination. The Cambridge Crystallographic Data Centre; Cambridge, UK: 2014.
Gainsford G.J., Luxenburger A., Woolhouse A.D. CCDC 790649: Experimental Crystal Structure Determination. The Cambridge Crystallographic Data Centre; Cambridge, UK: 2010.
Pinaka A., Vougioukalakis G., Dimotikali D., Psyharis V., Papadopoulos K. A Convenient One-Step Synthesis of Stable β-Amino Alcohol N-Boranes from α-Amino Acids. Synthesis. 2012;44:1057–1062. doi: 10.1002/chin.201231208. DOI
Apex 3, Saint. Bruker AXS Inc.; Madison, WI, USA: 2016.
Altomare A., Cascarano G., Giacovazzo C., Guagliardi A., Burla M.C., Polidori G., Camalli M. SIR92—A program for automatic solution of crystal structures by direct methods. J. Appl. Cryst. 1994;27:435. doi: 10.1107/S002188989400021X. DOI
Betteridge P.W., Carruthers J.R., Cooper R.I., Prout K., Watkin D.J. CRYSTALS version 12: Software for guided crystal structure analysis. J. Appl. Cryst. 2003;36:1487. doi: 10.1107/S0021889803021800. DOI
Macrae C.F., Bruno I.J., Chisholm J.A., Edgington P.R., McCabe P., Pidcock E., Rodriguez-Monge L., Taylor R., Streek J.V.D., Wood P.A. Mercury CSD 2.0—New features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008;41:466–470. doi: 10.1107/S0021889807067908. DOI
Hooft R.W.W., Straver L.H., Spek A.L. Determination of absolute structure using Bayesian statistics on Bijvoet differences. J. Appl. Cryst. 2008;41:96–103. doi: 10.1107/S0021889807059870. PubMed DOI PMC
Heterocycles in Medicinal Chemistry