• This record comes from PubMed

Inflammatory Bowel Disease Types Differ in Markers of Inflammation, Gut Barrier and in Specific Anti-Bacterial Response

. 2019 Jul 13 ; 8 (7) : . [epub] 20190713

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Crohn's disease (CD), ulcerative colitis (UC) and inflammatory bowel disease (IBD) associated with primary sclerosing cholangitis (PSC-IBD), share three major pathogenetic mechanisms of inflammatory bowel disease (IBD)-gut dysbiosis, gut barrier failure and immune system dysregulation. While clinical differences among them are well known, the underlying mechanisms are less explored. To gain an insight into the IBD pathogenesis and to find a specific biomarker pattern for each of them, we used protein array, ELISA and flow cytometry to analyze serum biomarkers and specific anti-microbial B and T cell responses to the gut commensals. We found that decrease in matrix metalloproteinase (MMP)-9 and increase in MMP-14 are the strongest factors discriminating IBD patients from healthy subjects and that PSC-IBD patients have higher levels of Mannan-binding lectin, tissue inhibitor of metalloproteinases 1 (TIMP-1), CD14 and osteoprotegerin than patients with UC. Moreover, we found that low transforming growth factor-β1 (TGF-β1) is associated with disease relapse and low osteoprotegerin with anti-tumor necrosis factor-alpha (TNF-α) therapy. Patients with CD have significantly decreased antibody and increased T cell response mainly to genera Eubacterium, Faecalibacterium and Bacteroides. These results stress the importance of the gut barrier function and immune response to commensal bacteria and point at the specific differences in pathogenesis of PSC-IBD, UC and CD.

See more in PubMed

Ng S.C., Shi H.Y., Hamidi N., Underwood F.E., Tang W., Benchimol E.I., Panaccione R., Ghosh S., Wu J.C.Y., Chan F.K.L., et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet. 2018;390:2769–2778. doi: 10.1016/S0140-6736(17)32448-0. PubMed DOI

Sartor R.B. Microbial influences in inflammatory bowel diseases. Gastroenterology. 2008;134:577–594. doi: 10.1053/j.gastro.2007.11.059. PubMed DOI

Loftus E.V., Jr., Harewood G.C., Loftus C.G., Tremaine W.J., Harmsen W.S., Zinsmeister A.R., Jewell D.A., Sandborn W.J. PSC-IBD: A unique form of inflammatory bowel disease associated with primary sclerosing cholangitis. Gut. 2005;54:91–96. doi: 10.1136/gut.2004.046615. PubMed DOI PMC

Baumgart D.C., Sandborn W.J. Inflammatory bowel disease: Clinical aspects and established and evolving therapies. Lancet. 2007;369:1641–1657. doi: 10.1016/S0140-6736(07)60751-X. PubMed DOI

Stein R.B., Hanauer S.B. Comparative tolerability of treatments for inflammatory bowel disease. Drug Saf. 2000;23:429–448. doi: 10.2165/00002018-200023050-00006. PubMed DOI

Swoger J.M., Binion D.G. Supportive therapy in IBD: What additional diagnoses and conditions must be treated? Dig. Dis. 2010;28:452–462. doi: 10.1159/000320402. PubMed DOI

Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. doi: 10.1038/nature08821. PubMed DOI PMC

Hoffmann C., Dollive S., Grunberg S., Chen J., Li H., Wu G.D., Lewis J.D., Bushman F.D. Archaea and fungi of the human gut microbiome: Correlations with diet and bacterial residents. PLoS ONE. 2013;8:e66019. doi: 10.1371/journal.pone.0066019. PubMed DOI PMC

Columpsi P., Sacchi P., Zuccaro V., Cima S., Sarda C., Mariani M., Gori A., Bruno R. Beyond the gut bacterial microbiota: The gut virome. J. Med. Virol. 2016;88:1467–1472. doi: 10.1002/jmv.24508. PubMed DOI PMC

Tlaskalova-Hogenova H., Sterzl J., Stepankova R., Dlabac V., Veticka V., Rossmann P., Mandel L., Rejnek J. Development of immunological capacity under germfree and conventional conditions. Ann. N. Y. Acad. Sci. 1983;409:96–113. doi: 10.1111/j.1749-6632.1983.tb26862.x. PubMed DOI

Du Z., Hudcovic T., Mrazek J., Kozakova H., Srutkova D., Schwarzer M., Tlaskalova-Hogenova H., Kostovcik M., Kverka M. Development of gut inflammation in mice colonized with mucosa-associated bacteria from patients with ulcerative colitis. Gut Pathog. 2015;7:32. doi: 10.1186/s13099-015-0080-2. PubMed DOI PMC

Darfeuille-Michaud A., Neut C., Barnich N., Lederman E., Di Martino P., Desreumaux P., Gambiez L., Joly B., Cortot A., Colombel J.F. Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn’s disease. Gastroenterology. 1998;115:1405–1413. doi: 10.1016/S0016-5085(98)70019-8. PubMed DOI

Mirsepasi-Lauridsen H.C., Du Z., Struve C., Charbon G., Karczewski J., Krogfelt K.A., Petersen A.M., Wells J.M. Secretion of Alpha-Hemolysin by Escherichia coli Disrupts Tight Junctions in Ulcerative Colitis Patients. Clin. Transl. Gastroenterol. 2016;7:e149. doi: 10.1038/ctg.2016.3. PubMed DOI PMC

Tannock G.W. Molecular analysis of the intestinal microflora in IBD. Mucosal Immunol. 2008;1:S15–S18. doi: 10.1038/mi.2008.54. PubMed DOI

Frank D.N., St Amand A.L., Feldman R.A., Boedeker E.C., Harpaz N., Pace N.R. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA. 2007;104:13780–13785. doi: 10.1073/pnas.0706625104. PubMed DOI PMC

Kverka M., Tlaskalova-Hogenova H. Intestinal Microbiota: Facts and Fiction. Dig. Dis. 2017;35:139–147. doi: 10.1159/000449095. PubMed DOI

McGuckin M.A., Eri R., Simms L.A., Florin T.H., Radford-Smith G. Intestinal barrier dysfunction in inflammatory bowel diseases. Inflamm. Bowel Dis. 2009;15:100–113. doi: 10.1002/ibd.20539. PubMed DOI

Tlaskalova-Hogenova H., Stepankova R., Kozakova H., Hudcovic T., Vannucci L., Tuckova L., Rossmann P., Hrncir T., Kverka M., Zakostelska Z., et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: Contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol. Immunol. 2011;8:110–120. doi: 10.1038/cmi.2010.67. PubMed DOI PMC

Chang J., Leong R.W., Wasinger V.C., Ip M., Yang M., Phan T.G. Impaired Intestinal Permeability Contributes to Ongoing Bowel Symptoms in Patients With Inflammatory Bowel Disease and Mucosal Healing. Gastroenterology. 2017;153:723–731 e721. doi: 10.1053/j.gastro.2017.05.056. PubMed DOI

Johansson M.E., Gustafsson J.K., Holmen-Larsson J., Jabbar K.S., Xia L., Xu H., Ghishan F.K., Carvalho F.A., Gewirtz A.T., Sjovall H., et al. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut. 2014;63:281–291. doi: 10.1136/gutjnl-2012-303207. PubMed DOI PMC

Zeissig S., Burgel N., Gunzel D., Richter J., Mankertz J., Wahnschaffe U., Kroesen A.J., Zeitz M., Fromm M., Schulzke J.D. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut. 2007;56:61–72. doi: 10.1136/gut.2006.094375. PubMed DOI PMC

Guthmann F., Borchers T., Wolfrum C., Wustrack T., Bartholomaus S., Spener F. Plasma concentration of intestinal-and liver-FABP in neonates suffering from necrotizing enterocolitis and in healthy preterm neonates. Mol. Cell Biochem. 2002;239:227–234. doi: 10.1023/A:1020508420058. PubMed DOI

Coufal S., Kokesova A., Tlaskalova-Hogenova H., Snajdauf J., Rygl M., Kverka M. Urinary Intestinal Fatty Acid-Binding Protein Can Distinguish Necrotizing Enterocolitis from Sepsis in Early Stage of the Disease. J. Immunol. Res. 2016;2016:5727312. doi: 10.1155/2016/5727312. PubMed DOI PMC

Kokesova A., Coufal S., Frybova B., Kverka M., Rygl M. The intestinal fatty acid-binding protein as a marker for intestinal damage in gastroschisis. PLoS ONE. 2019;14:e0210797. doi: 10.1371/journal.pone.0210797. PubMed DOI PMC

Faubion W.A., Jr., Fletcher J.G., O’Byrne S., Feagan B.G., de Villiers W.J., Salzberg B., Plevy S., Proctor D.D., Valentine J.F., Higgins P.D., et al. EMerging BiomARKers in Inflammatory Bowel Disease (EMBARK) study identifies fecal calprotectin, serum MMP9, and serum IL-22 as a novel combination of biomarkers for Crohn’s disease activity: Role of cross-sectional imaging. Am. J. Gastroenterol. 2013;108:1891–1900. doi: 10.1038/ajg.2013.354. PubMed DOI

Farkas K., Sarodi Z., Balint A., Foldesi I., Tiszlavicz L., Szucs M., Nyari T., Tajti J., Nagy F., Szepes Z., et al. The diagnostic value of a new fecal marker, matrix metalloprotease-9, in different types of inflammatory bowel diseases. J. Crohn’s Colitis. 2015;9:231–237. doi: 10.1093/ecco-jcc/jjv005. PubMed DOI

Mathew C.G. New links to the pathogenesis of Crohn disease provided by genome-wide association scans. Nat. Rev. Genet. 2008;9:9–14. doi: 10.1038/nrg2203. PubMed DOI

McGovern D.P., Gardet A., Torkvist L., Goyette P., Essers J., Taylor K.D., Neale B.M., Ong R.T., Lagace C., Li C., et al. Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nat. Genet. 2010;42:332–337. doi: 10.1038/ng.549. PubMed DOI PMC

Blumberg R.S. Inflammation in the intestinal tract: Pathogenesis and treatment. Dig. Dis. 2009;27:455–464. doi: 10.1159/000235851. PubMed DOI PMC

Adams R.J., Heazlewood S.P., Gilshenan K.S., O’Brien M., McGuckin M.A., Florin T.H. IgG antibodies against common gut bacteria are more diagnostic for Crohn’s disease than IgG against mannan or flagellin. Am. J. Gastroenterol. 2008;103:386–396. doi: 10.1111/j.1572-0241.2007.01577.x. PubMed DOI

Ruemmele F.M., Targan S.R., Levy G., Dubinsky M., Braun J., Seidman E.G. Diagnostic accuracy of serological assays in pediatric inflammatory bowel disease. Gastroenterology. 1998;115:822–829. doi: 10.1016/S0016-5085(98)70252-5. PubMed DOI

Zholudev A., Zurakowski D., Young W., Leichtner A., Bousvaros A. Serologic testing with ANCA, ASCA, and anti-OmpC in children and young adults with Crohn’s disease and ulcerative colitis: Diagnostic value and correlation with disease phenotype. Am. J. Gastroenterol. 2004;99:2235–2241. doi: 10.1111/j.1572-0241.2004.40369.x. PubMed DOI

Duarte-Silva M., Afonso P.C., de Souza P.R., Peghini B.C., Rodrigues-Junior V., de Barros Cardoso C.R. Reappraisal of antibodies against Saccharomyces cerevisiae (ASCA) as persistent biomarkers in quiescent Crohn’s disease. Autoimmunity. 2019;52:37–47. doi: 10.1080/08916934.2019.1588889. PubMed DOI

Sitaraman S.V., Klapproth J.M., Moore D.A., 3rd, Landers C., Targan S., Williams I.R., Gewirtz A.T. Elevated flagellin-specific immunoglobulins in Crohn’s disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2005;288:G403–G406. doi: 10.1152/ajpgi.00357.2004. PubMed DOI

Iltanen S., Tervo L., Halttunen T., Wei B., Braun J., Rantala I., Honkanen T., Kronenberg M., Cheroutre H., Turovskaya O., et al. Elevated serum anti-I2 and anti-OmpW antibody levels in children with IBD. Inflamm. Bowel Dis. 2006;12:389–394. doi: 10.1097/01.MIB.0000218765.84087.42. PubMed DOI

Papp M., Norman G.L., Altorjay I., Lakatos P.L. Utility of serological markers in inflammatory bowel diseases: Gadget or magic? World J. Gastroenterol. 2007;13:2028–2036. doi: 10.3748/wjg.v13.i14.2028. PubMed DOI PMC

Peyrin-Biroulet L., Standaert-Vitse A., Branche J., Chamaillard M. IBD serological panels: Facts and perspectives. Inflamm. Bowel Dis. 2007;13:1561–1566. doi: 10.1002/ibd.20226. PubMed DOI

Lewis J.D. The utility of biomarkers in the diagnosis and therapy of inflammatory bowel disease. Gastroenterology. 2011;140:1817–1826.e1812. doi: 10.1053/j.gastro.2010.11.058. PubMed DOI PMC

Cathelin R., Lopez F., Klopp C. AGScan: A pluggable microarray image quantification software based on the ImageJ library. Bioinformatics. 2007;23:247–248. doi: 10.1093/bioinformatics/btl564. PubMed DOI

Tibshirani R., Hastie T., Narasimhan B., Chu G. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc. Natl. Acad. Sci. USA. 2002;99:6567–6572. doi: 10.1073/pnas.082099299. PubMed DOI PMC

Bajer L., Kverka M., Kostovcik M., Macinga P., Dvorak J., Stehlikova Z., Brezina J., Wohl P., Spicak J., Drastich P. Distinct gut microbiota profiles in patients with primary sclerosing cholangitis and ulcerative colitis. World J. Gastroenterol. 2017;23:4548–4558. doi: 10.3748/wjg.v23.i25.4548. PubMed DOI PMC

Kreher C.R., Dittrich M.T., Guerkov R., Boehm B.O., Tary-Lehmann M. CD4+ and CD8+ cells in cryopreserved human PBMC maintain full functionality in cytokine ELISPOT assays. J. Immunol. Methods. 2003;278:79–93. doi: 10.1016/S0022-1759(03)00226-6. PubMed DOI

Hegazy A.N., West N.R., Stubbington M.J.T., Wendt E., Suijker K.I.M., Datsi A., This S., Danne C., Campion S., Duncan S.H., et al. Circulating and Tissue-Resident CD4(+) T Cells With Reactivity to Intestinal Microbiota Are Abundant in Healthy Individuals and Function Is Altered During Inflammation. Gastroenterology. 2017;153:1320–1337.e1316. doi: 10.1053/j.gastro.2017.07.047. PubMed DOI PMC

Basu A., Hoerning A., Datta D., Edelbauer M., Stack M.P., Calzadilla K., Pal S., Briscoe D.M. Cutting Edge: Vascular Endothelial Growth Factor-Mediated Signaling in Human CD45RO+ CD4+ T Cells Promotes Akt and ERK Activation and Costimulates IFN- Production. J. Immunol. 2009;184:545–549. doi: 10.4049/jimmunol.0900397. PubMed DOI PMC

Danese S. VEGF in inflammatory bowel disease: A master regulator of mucosal immune-driven angiogenesis. Dig. Liver Dis. 2008;40:680–683. doi: 10.1016/j.dld.2008.02.036. PubMed DOI

Zdravkovic N.D., Jovanovic I.P., Radosavljevic G.D., Arsenijevic A.N., Zdravkovic N.D., Mitrovic S.L., Arsenijevic N.N. Potential Dual Immunomodulatory Role of VEGF in Ulcerative Colitis and Colorectal Carcinoma. Int. J. Med Sci. 2014;11:936–947. doi: 10.7150/ijms.8277. PubMed DOI PMC

Dorsch M., Qiu Y., Soler D., Frank N., Duong T., Goodearl A., O’Neil S., Lora J., Fraser C.C. PK1/EG-VEGF induces monocyte differentiation and activation. J. Leukoc. Biol. 2005;78:426–434. doi: 10.1189/jlb.0205061. PubMed DOI

Wu L., Ruffing N., Shi X., Newman W., Soler D., Mackay C.R., Qin S. Discrete steps in binding and signaling of interleukin-8 with its receptor. J. Biol. Chem. 1996;271:31202–31209. doi: 10.1074/jbc.271.49.31202. PubMed DOI

Sabroe I., Jones E.C., Whyte M.K., Dower S.K. Regulation of human neutrophil chemokine receptor expression and function by activation of Toll-like receptors 2 and 4. Immunology. 2005;115:90–98. doi: 10.1111/j.1365-2567.2005.02133.x. PubMed DOI PMC

Muthas D., Reznichenko A., Balendran C.A., Bottcher G., Clausen I.G., Karrman Mardh C., Ottosson T., Uddin M., MacDonald T.T., Danese S., et al. Neutrophils in ulcerative colitis: A review of selected biomarkers and their potential therapeutic implications. Scand. J. Gastroenterol. 2017;52:125–135. doi: 10.1080/00365521.2016.1235224. PubMed DOI

Simonet W.S., Lacey D.L., Dunstan C.R., Kelley M., Chang M.S., Luthy R., Nguyen H.Q., Wooden S., Bennett L., Boone T., et al. Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell. 1997;89:309–319. doi: 10.1016/S0092-8674(00)80209-3. PubMed DOI

Liu W., Xu C., Zhao H., Xia P., Song R., Gu J., Liu X., Bian J., Yuan Y., Liu Z. Osteoprotegerin Induces Apoptosis of Osteoclasts and Osteoclast Precursor Cells via the Fas/Fas Ligand Pathway. PLoS ONE. 2015;10:e0142519. doi: 10.1371/journal.pone.0142519. PubMed DOI PMC

Franchimont N., Reenaers C., Lambert C., Belaiche J., Bours V., Malaise M., Delvenne P., Louis E. Increased expression of receptor activator of NF-kappaB ligand (RANKL), its receptor RANK and its decoy receptor osteoprotegerin in the colon of Crohn’s disease patients. Clin. Exp. Immunol. 2004;138:491–498. doi: 10.1111/j.1365-2249.2004.02643.x. PubMed DOI PMC

Moschen A.R., Kaser A., Enrich B., Ludwiczek O., Gabriel M., Obrist P., Wolf A.M., Tilg H. The RANKL/OPG system is activated in inflammatory bowel disease and relates to the state of bone loss. Gut. 2005;54:479–487. doi: 10.1136/gut.2004.044370. PubMed DOI PMC

Valentine J.F., Sninsky C.A. Prevention and treatment of osteoporosis in patients with inflammatory bowel disease. Am. J. Gastroenterol. 1999;94:878–883. doi: 10.1111/j.1572-0241.1999.981_d.x. PubMed DOI

Kapsoritakis A.N., Kapsoritaki A.I., Davidi I.P., Lotis V.D., Manolakis A.C., Mylonis P.I., Theodoridou A.T., Germenis A.E., Potamianos S.P. Imbalance of tissue inhibitors of metalloproteinases (TIMP)—1 and—4 serum levels, in patients with inflammatory bowel disease. BMC Gastroenterol. 2008;8:55. doi: 10.1186/1471-230X-8-55. PubMed DOI PMC

Somerville R.P., Oblander S.A., Apte S.S. Matrix metalloproteinases: Old dogs with new tricks. Genome Biol. 2003;4:216. doi: 10.1186/gb-2003-4-6-216. PubMed DOI PMC

Baugh M.D., Perry M.J., Hollander A.P., Davies D.R., Cross S.S., Lobo A.J., Taylor C.J., Evans G.S. Matrix metalloproteinase levels are elevated in inflammatory bowel disease. Gastroenterology. 1999;117:814–822. doi: 10.1016/S0016-5085(99)70339-2. PubMed DOI

Lakatos G., Hritz I., Varga M.Z., Juhász M., Miheller P., Cierny G., Tulassay Z., Herszényi L. The impact of matrix metalloproteinases and their tissue inhibitors in inflammatory bowel diseases. Dig. Dis. 2012;30:289–295. doi: 10.1159/000336995. PubMed DOI

Kofla-Dlubacz A., Matusiewicz M., Krzystek-Korpacka M., Iwanczak B. Correlation of MMP-3 and MMP-9 with Crohn’s Disease Activity in Children. Dig. Dis. Sci. 2011;57:706–712. doi: 10.1007/s10620-011-1936-z. PubMed DOI PMC

Makitalo L., Rintamaki H., Tervahartiala T., Sorsa T., Kolho K.L. Serum MMPs 7-9 and their inhibitors during glucocorticoid and anti-TNF-alpha therapy in pediatric inflammatory bowel disease. Scand. J. Gastroenterol. 2012;47:785–794. doi: 10.3109/00365521.2012.677954. PubMed DOI

Crowe M.J., Doetschman T., Greenhalgh D.G. Delayed Wound Healing in Immunodeficient TGF-β1 Knockout Mice. J. Investig. Dermatol. 2000;115:3–11. doi: 10.1046/j.1523-1747.2000.00010.x. PubMed DOI

Hahm K.B. Loss of transforming growth factor beta signalling in the intestine contributes to tissue injury in inflammatory bowel disease. Gut. 2001;49:190–198. doi: 10.1136/gut.49.2.190. PubMed DOI PMC

Howe K.L., Reardon C., Wang A., Nazli A., McKay D.M. Transforming Growth Factor-β Regulation of Epithelial Tight Junction Proteins Enhances Barrier Function and Blocks Enterohemorrhagic Escherichia coli O157:H7-Induced Increased Permeability. Am. J. Pathol. 2005;167:1587–1597. doi: 10.1016/S0002-9440(10)61243-6. PubMed DOI PMC

Stallmach A., Schuppan D., Riese H.H., Matthes H., Riecken E.O. Increased collagen type III synthesis by fibroblasts isolated from strictures of patients with Crohn’s disease. Gastroenterology. 1992;102:1920–1929. doi: 10.1016/0016-5085(92)90314-O. PubMed DOI

Kader H.A., Tchernev V.T., Satyaraj E., Lejnine S., Kotler G., Kingsmore S.F., Patel D.D. Protein microarray analysis of disease activity in pediatric inflammatory bowel disease demonstrates elevated serum PLGF, IL-7, TGF-beta1, and IL-12p40 levels in Crohn’s disease and ulcerative colitis patients in remission versus active disease. Am. J. Gastroenterol. 2005;100:414–423. doi: 10.1111/j.1572-0241.2005.40819.x. PubMed DOI PMC

Miquel S., Martin R., Rossi O., Bermudez-Humaran L.G., Chatel J.M., Sokol H., Thomas M., Wells J.M., Langella P. Faecalibacterium prausnitzii and human intestinal health. Curr. Opin. Microbiol. 2013;16:255–261. doi: 10.1016/j.mib.2013.06.003. PubMed DOI

Fujimoto T., Imaeda H., Takahashi K., Kasumi E., Bamba S., Fujiyama Y., Andoh A. Decreased abundance of Faecalibacterium prausnitzii in the gut microbiota of Crohn’s disease. J. Gastroenterol. Hepatol. 2013;28:613–619. doi: 10.1111/jgh.12073. PubMed DOI

Rajca S., Grondin V., Louis E., Vernier-Massouille G., Grimaud J.C., Bouhnik Y., Laharie D., Dupas J.-L., Pillant H., Picon L., et al. Alterations in the Intestinal Microbiome (Dysbiosis) as a Predictor of Relapse After Infliximab Withdrawal in Crohn’s Disease. Inflamm. Bowel Dis. 2014;20:978–986. doi: 10.1097/mib.0000000000000036. PubMed DOI

Sokol H., Pigneur B., Watterlot L., Lakhdari O., Bermudez-Humaran L.G., Gratadoux J.J., Blugeon S., Bridonneau C., Furet J.P., Corthier G., et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA. 2008;105:16731–16736. doi: 10.1073/pnas.0804812105. PubMed DOI PMC

Quevrain E., Maubert M.A., Michon C., Chain F., Marquant R., Tailhades J., Miquel S., Carlier L., Bermudez-Humaran L.G., Pigneur B., et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut. 2016;65:415–425. doi: 10.1136/gutjnl-2014-307649. PubMed DOI PMC

Takahashi K., Nishida A., Fujimoto T., Fujii M., Shioya M., Imaeda H., Inatomi O., Bamba S., Sugimoto M., Andoh A. Reduced Abundance of Butyrate-Producing Bacteria Species in the Fecal Microbial Community in Crohn’s Disease. Digestion. 2016;93:59–65. doi: 10.1159/000441768. PubMed DOI

Jensen S.R., Mirsepasi-Lauridsen H.C., Thysen A.H., Brynskov J., Krogfelt K.A., Petersen A.M., Pedersen A.E., Brix S. Distinct inflammatory and cytopathic characteristics of Escherichia coli isolates from inflammatory bowel disease patients. Int. J. Med. Microbiol. 2015;305:925–936. doi: 10.1016/j.ijmm.2015.10.002. PubMed DOI

Iqbal N., Oliver J.R., Wagner F.H., Lazenby A.S., Elson C.O., Weaver C.T. T helper 1 and T helper 2 cells are pathogenic in an antigen-specific model of colitis. J. Exp. Med. 2002;195:71–84. doi: 10.1084/jem.2001889. PubMed DOI PMC

Feng T., Wang L., Schoeb T.R., Elson C.O., Cong Y. Microbiota innate stimulation is a prerequisite for T cell spontaneous proliferation and induction of experimental colitis. J. Exp. Med. 2010;207:1321–1332. doi: 10.1084/jem.20092253. PubMed DOI PMC

Calderon-Gomez E., Bassolas-Molina H., Mora-Buch R., Dotti I., Planell N., Esteller M., Gallego M., Marti M., Garcia-Martin C., Martinez-Torro C., et al. Commensal-specific CD4(+) cells from patients with Crohn’s disease have a t-helper 17 inflammatory profile. Gastroenterology. 2016;151:489–500. doi: 10.1053/j.gastro.2016.05.050. PubMed DOI

Casanova M.J., Chaparro M., Garcia-Sanchez V., Nantes O., Leo E., Rojas-Feria M., Jauregui-Amezaga A., Garcia-Lopez S., Huguet J.M., Arguelles-Arias F., et al. Evolution after anti-TNF discontinuation in patients with inflammatory bowel disease: A multicenter long-term follow-up study. Am. J. Gastroenterol. 2017;112:120–131. doi: 10.1038/ajg.2016.569. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...