Inflammatory Bowel Disease Types Differ in Markers of Inflammation, Gut Barrier and in Specific Anti-Bacterial Response
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
31337064
PubMed Central
PMC6678638
DOI
10.3390/cells8070719
PII: cells8070719
Knihovny.cz E-resources
- Keywords
- T cells, antibodies, biomarkers, gut barrier, inflammatory bowel disease, microbiota,
- MeSH
- Biomarkers blood MeSH
- Crohn Disease complications diagnosis metabolism MeSH
- Adult MeSH
- Dysbiosis complications MeSH
- Middle Aged MeSH
- Humans MeSH
- Cholangitis, Sclerosing complications MeSH
- Colitis, Ulcerative complications diagnosis metabolism MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biomarkers MeSH
Crohn's disease (CD), ulcerative colitis (UC) and inflammatory bowel disease (IBD) associated with primary sclerosing cholangitis (PSC-IBD), share three major pathogenetic mechanisms of inflammatory bowel disease (IBD)-gut dysbiosis, gut barrier failure and immune system dysregulation. While clinical differences among them are well known, the underlying mechanisms are less explored. To gain an insight into the IBD pathogenesis and to find a specific biomarker pattern for each of them, we used protein array, ELISA and flow cytometry to analyze serum biomarkers and specific anti-microbial B and T cell responses to the gut commensals. We found that decrease in matrix metalloproteinase (MMP)-9 and increase in MMP-14 are the strongest factors discriminating IBD patients from healthy subjects and that PSC-IBD patients have higher levels of Mannan-binding lectin, tissue inhibitor of metalloproteinases 1 (TIMP-1), CD14 and osteoprotegerin than patients with UC. Moreover, we found that low transforming growth factor-β1 (TGF-β1) is associated with disease relapse and low osteoprotegerin with anti-tumor necrosis factor-alpha (TNF-α) therapy. Patients with CD have significantly decreased antibody and increased T cell response mainly to genera Eubacterium, Faecalibacterium and Bacteroides. These results stress the importance of the gut barrier function and immune response to commensal bacteria and point at the specific differences in pathogenesis of PSC-IBD, UC and CD.
See more in PubMed
Ng S.C., Shi H.Y., Hamidi N., Underwood F.E., Tang W., Benchimol E.I., Panaccione R., Ghosh S., Wu J.C.Y., Chan F.K.L., et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet. 2018;390:2769–2778. doi: 10.1016/S0140-6736(17)32448-0. PubMed DOI
Sartor R.B. Microbial influences in inflammatory bowel diseases. Gastroenterology. 2008;134:577–594. doi: 10.1053/j.gastro.2007.11.059. PubMed DOI
Loftus E.V., Jr., Harewood G.C., Loftus C.G., Tremaine W.J., Harmsen W.S., Zinsmeister A.R., Jewell D.A., Sandborn W.J. PSC-IBD: A unique form of inflammatory bowel disease associated with primary sclerosing cholangitis. Gut. 2005;54:91–96. doi: 10.1136/gut.2004.046615. PubMed DOI PMC
Baumgart D.C., Sandborn W.J. Inflammatory bowel disease: Clinical aspects and established and evolving therapies. Lancet. 2007;369:1641–1657. doi: 10.1016/S0140-6736(07)60751-X. PubMed DOI
Stein R.B., Hanauer S.B. Comparative tolerability of treatments for inflammatory bowel disease. Drug Saf. 2000;23:429–448. doi: 10.2165/00002018-200023050-00006. PubMed DOI
Swoger J.M., Binion D.G. Supportive therapy in IBD: What additional diagnoses and conditions must be treated? Dig. Dis. 2010;28:452–462. doi: 10.1159/000320402. PubMed DOI
Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. doi: 10.1038/nature08821. PubMed DOI PMC
Hoffmann C., Dollive S., Grunberg S., Chen J., Li H., Wu G.D., Lewis J.D., Bushman F.D. Archaea and fungi of the human gut microbiome: Correlations with diet and bacterial residents. PLoS ONE. 2013;8:e66019. doi: 10.1371/journal.pone.0066019. PubMed DOI PMC
Columpsi P., Sacchi P., Zuccaro V., Cima S., Sarda C., Mariani M., Gori A., Bruno R. Beyond the gut bacterial microbiota: The gut virome. J. Med. Virol. 2016;88:1467–1472. doi: 10.1002/jmv.24508. PubMed DOI PMC
Tlaskalova-Hogenova H., Sterzl J., Stepankova R., Dlabac V., Veticka V., Rossmann P., Mandel L., Rejnek J. Development of immunological capacity under germfree and conventional conditions. Ann. N. Y. Acad. Sci. 1983;409:96–113. doi: 10.1111/j.1749-6632.1983.tb26862.x. PubMed DOI
Du Z., Hudcovic T., Mrazek J., Kozakova H., Srutkova D., Schwarzer M., Tlaskalova-Hogenova H., Kostovcik M., Kverka M. Development of gut inflammation in mice colonized with mucosa-associated bacteria from patients with ulcerative colitis. Gut Pathog. 2015;7:32. doi: 10.1186/s13099-015-0080-2. PubMed DOI PMC
Darfeuille-Michaud A., Neut C., Barnich N., Lederman E., Di Martino P., Desreumaux P., Gambiez L., Joly B., Cortot A., Colombel J.F. Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn’s disease. Gastroenterology. 1998;115:1405–1413. doi: 10.1016/S0016-5085(98)70019-8. PubMed DOI
Mirsepasi-Lauridsen H.C., Du Z., Struve C., Charbon G., Karczewski J., Krogfelt K.A., Petersen A.M., Wells J.M. Secretion of Alpha-Hemolysin by Escherichia coli Disrupts Tight Junctions in Ulcerative Colitis Patients. Clin. Transl. Gastroenterol. 2016;7:e149. doi: 10.1038/ctg.2016.3. PubMed DOI PMC
Tannock G.W. Molecular analysis of the intestinal microflora in IBD. Mucosal Immunol. 2008;1:S15–S18. doi: 10.1038/mi.2008.54. PubMed DOI
Frank D.N., St Amand A.L., Feldman R.A., Boedeker E.C., Harpaz N., Pace N.R. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA. 2007;104:13780–13785. doi: 10.1073/pnas.0706625104. PubMed DOI PMC
Kverka M., Tlaskalova-Hogenova H. Intestinal Microbiota: Facts and Fiction. Dig. Dis. 2017;35:139–147. doi: 10.1159/000449095. PubMed DOI
McGuckin M.A., Eri R., Simms L.A., Florin T.H., Radford-Smith G. Intestinal barrier dysfunction in inflammatory bowel diseases. Inflamm. Bowel Dis. 2009;15:100–113. doi: 10.1002/ibd.20539. PubMed DOI
Tlaskalova-Hogenova H., Stepankova R., Kozakova H., Hudcovic T., Vannucci L., Tuckova L., Rossmann P., Hrncir T., Kverka M., Zakostelska Z., et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: Contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol. Immunol. 2011;8:110–120. doi: 10.1038/cmi.2010.67. PubMed DOI PMC
Chang J., Leong R.W., Wasinger V.C., Ip M., Yang M., Phan T.G. Impaired Intestinal Permeability Contributes to Ongoing Bowel Symptoms in Patients With Inflammatory Bowel Disease and Mucosal Healing. Gastroenterology. 2017;153:723–731 e721. doi: 10.1053/j.gastro.2017.05.056. PubMed DOI
Johansson M.E., Gustafsson J.K., Holmen-Larsson J., Jabbar K.S., Xia L., Xu H., Ghishan F.K., Carvalho F.A., Gewirtz A.T., Sjovall H., et al. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut. 2014;63:281–291. doi: 10.1136/gutjnl-2012-303207. PubMed DOI PMC
Zeissig S., Burgel N., Gunzel D., Richter J., Mankertz J., Wahnschaffe U., Kroesen A.J., Zeitz M., Fromm M., Schulzke J.D. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut. 2007;56:61–72. doi: 10.1136/gut.2006.094375. PubMed DOI PMC
Guthmann F., Borchers T., Wolfrum C., Wustrack T., Bartholomaus S., Spener F. Plasma concentration of intestinal-and liver-FABP in neonates suffering from necrotizing enterocolitis and in healthy preterm neonates. Mol. Cell Biochem. 2002;239:227–234. doi: 10.1023/A:1020508420058. PubMed DOI
Coufal S., Kokesova A., Tlaskalova-Hogenova H., Snajdauf J., Rygl M., Kverka M. Urinary Intestinal Fatty Acid-Binding Protein Can Distinguish Necrotizing Enterocolitis from Sepsis in Early Stage of the Disease. J. Immunol. Res. 2016;2016:5727312. doi: 10.1155/2016/5727312. PubMed DOI PMC
Kokesova A., Coufal S., Frybova B., Kverka M., Rygl M. The intestinal fatty acid-binding protein as a marker for intestinal damage in gastroschisis. PLoS ONE. 2019;14:e0210797. doi: 10.1371/journal.pone.0210797. PubMed DOI PMC
Faubion W.A., Jr., Fletcher J.G., O’Byrne S., Feagan B.G., de Villiers W.J., Salzberg B., Plevy S., Proctor D.D., Valentine J.F., Higgins P.D., et al. EMerging BiomARKers in Inflammatory Bowel Disease (EMBARK) study identifies fecal calprotectin, serum MMP9, and serum IL-22 as a novel combination of biomarkers for Crohn’s disease activity: Role of cross-sectional imaging. Am. J. Gastroenterol. 2013;108:1891–1900. doi: 10.1038/ajg.2013.354. PubMed DOI
Farkas K., Sarodi Z., Balint A., Foldesi I., Tiszlavicz L., Szucs M., Nyari T., Tajti J., Nagy F., Szepes Z., et al. The diagnostic value of a new fecal marker, matrix metalloprotease-9, in different types of inflammatory bowel diseases. J. Crohn’s Colitis. 2015;9:231–237. doi: 10.1093/ecco-jcc/jjv005. PubMed DOI
Mathew C.G. New links to the pathogenesis of Crohn disease provided by genome-wide association scans. Nat. Rev. Genet. 2008;9:9–14. doi: 10.1038/nrg2203. PubMed DOI
McGovern D.P., Gardet A., Torkvist L., Goyette P., Essers J., Taylor K.D., Neale B.M., Ong R.T., Lagace C., Li C., et al. Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nat. Genet. 2010;42:332–337. doi: 10.1038/ng.549. PubMed DOI PMC
Blumberg R.S. Inflammation in the intestinal tract: Pathogenesis and treatment. Dig. Dis. 2009;27:455–464. doi: 10.1159/000235851. PubMed DOI PMC
Adams R.J., Heazlewood S.P., Gilshenan K.S., O’Brien M., McGuckin M.A., Florin T.H. IgG antibodies against common gut bacteria are more diagnostic for Crohn’s disease than IgG against mannan or flagellin. Am. J. Gastroenterol. 2008;103:386–396. doi: 10.1111/j.1572-0241.2007.01577.x. PubMed DOI
Ruemmele F.M., Targan S.R., Levy G., Dubinsky M., Braun J., Seidman E.G. Diagnostic accuracy of serological assays in pediatric inflammatory bowel disease. Gastroenterology. 1998;115:822–829. doi: 10.1016/S0016-5085(98)70252-5. PubMed DOI
Zholudev A., Zurakowski D., Young W., Leichtner A., Bousvaros A. Serologic testing with ANCA, ASCA, and anti-OmpC in children and young adults with Crohn’s disease and ulcerative colitis: Diagnostic value and correlation with disease phenotype. Am. J. Gastroenterol. 2004;99:2235–2241. doi: 10.1111/j.1572-0241.2004.40369.x. PubMed DOI
Duarte-Silva M., Afonso P.C., de Souza P.R., Peghini B.C., Rodrigues-Junior V., de Barros Cardoso C.R. Reappraisal of antibodies against Saccharomyces cerevisiae (ASCA) as persistent biomarkers in quiescent Crohn’s disease. Autoimmunity. 2019;52:37–47. doi: 10.1080/08916934.2019.1588889. PubMed DOI
Sitaraman S.V., Klapproth J.M., Moore D.A., 3rd, Landers C., Targan S., Williams I.R., Gewirtz A.T. Elevated flagellin-specific immunoglobulins in Crohn’s disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2005;288:G403–G406. doi: 10.1152/ajpgi.00357.2004. PubMed DOI
Iltanen S., Tervo L., Halttunen T., Wei B., Braun J., Rantala I., Honkanen T., Kronenberg M., Cheroutre H., Turovskaya O., et al. Elevated serum anti-I2 and anti-OmpW antibody levels in children with IBD. Inflamm. Bowel Dis. 2006;12:389–394. doi: 10.1097/01.MIB.0000218765.84087.42. PubMed DOI
Papp M., Norman G.L., Altorjay I., Lakatos P.L. Utility of serological markers in inflammatory bowel diseases: Gadget or magic? World J. Gastroenterol. 2007;13:2028–2036. doi: 10.3748/wjg.v13.i14.2028. PubMed DOI PMC
Peyrin-Biroulet L., Standaert-Vitse A., Branche J., Chamaillard M. IBD serological panels: Facts and perspectives. Inflamm. Bowel Dis. 2007;13:1561–1566. doi: 10.1002/ibd.20226. PubMed DOI
Lewis J.D. The utility of biomarkers in the diagnosis and therapy of inflammatory bowel disease. Gastroenterology. 2011;140:1817–1826.e1812. doi: 10.1053/j.gastro.2010.11.058. PubMed DOI PMC
Cathelin R., Lopez F., Klopp C. AGScan: A pluggable microarray image quantification software based on the ImageJ library. Bioinformatics. 2007;23:247–248. doi: 10.1093/bioinformatics/btl564. PubMed DOI
Tibshirani R., Hastie T., Narasimhan B., Chu G. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc. Natl. Acad. Sci. USA. 2002;99:6567–6572. doi: 10.1073/pnas.082099299. PubMed DOI PMC
Bajer L., Kverka M., Kostovcik M., Macinga P., Dvorak J., Stehlikova Z., Brezina J., Wohl P., Spicak J., Drastich P. Distinct gut microbiota profiles in patients with primary sclerosing cholangitis and ulcerative colitis. World J. Gastroenterol. 2017;23:4548–4558. doi: 10.3748/wjg.v23.i25.4548. PubMed DOI PMC
Kreher C.R., Dittrich M.T., Guerkov R., Boehm B.O., Tary-Lehmann M. CD4+ and CD8+ cells in cryopreserved human PBMC maintain full functionality in cytokine ELISPOT assays. J. Immunol. Methods. 2003;278:79–93. doi: 10.1016/S0022-1759(03)00226-6. PubMed DOI
Hegazy A.N., West N.R., Stubbington M.J.T., Wendt E., Suijker K.I.M., Datsi A., This S., Danne C., Campion S., Duncan S.H., et al. Circulating and Tissue-Resident CD4(+) T Cells With Reactivity to Intestinal Microbiota Are Abundant in Healthy Individuals and Function Is Altered During Inflammation. Gastroenterology. 2017;153:1320–1337.e1316. doi: 10.1053/j.gastro.2017.07.047. PubMed DOI PMC
Basu A., Hoerning A., Datta D., Edelbauer M., Stack M.P., Calzadilla K., Pal S., Briscoe D.M. Cutting Edge: Vascular Endothelial Growth Factor-Mediated Signaling in Human CD45RO+ CD4+ T Cells Promotes Akt and ERK Activation and Costimulates IFN- Production. J. Immunol. 2009;184:545–549. doi: 10.4049/jimmunol.0900397. PubMed DOI PMC
Danese S. VEGF in inflammatory bowel disease: A master regulator of mucosal immune-driven angiogenesis. Dig. Liver Dis. 2008;40:680–683. doi: 10.1016/j.dld.2008.02.036. PubMed DOI
Zdravkovic N.D., Jovanovic I.P., Radosavljevic G.D., Arsenijevic A.N., Zdravkovic N.D., Mitrovic S.L., Arsenijevic N.N. Potential Dual Immunomodulatory Role of VEGF in Ulcerative Colitis and Colorectal Carcinoma. Int. J. Med Sci. 2014;11:936–947. doi: 10.7150/ijms.8277. PubMed DOI PMC
Dorsch M., Qiu Y., Soler D., Frank N., Duong T., Goodearl A., O’Neil S., Lora J., Fraser C.C. PK1/EG-VEGF induces monocyte differentiation and activation. J. Leukoc. Biol. 2005;78:426–434. doi: 10.1189/jlb.0205061. PubMed DOI
Wu L., Ruffing N., Shi X., Newman W., Soler D., Mackay C.R., Qin S. Discrete steps in binding and signaling of interleukin-8 with its receptor. J. Biol. Chem. 1996;271:31202–31209. doi: 10.1074/jbc.271.49.31202. PubMed DOI
Sabroe I., Jones E.C., Whyte M.K., Dower S.K. Regulation of human neutrophil chemokine receptor expression and function by activation of Toll-like receptors 2 and 4. Immunology. 2005;115:90–98. doi: 10.1111/j.1365-2567.2005.02133.x. PubMed DOI PMC
Muthas D., Reznichenko A., Balendran C.A., Bottcher G., Clausen I.G., Karrman Mardh C., Ottosson T., Uddin M., MacDonald T.T., Danese S., et al. Neutrophils in ulcerative colitis: A review of selected biomarkers and their potential therapeutic implications. Scand. J. Gastroenterol. 2017;52:125–135. doi: 10.1080/00365521.2016.1235224. PubMed DOI
Simonet W.S., Lacey D.L., Dunstan C.R., Kelley M., Chang M.S., Luthy R., Nguyen H.Q., Wooden S., Bennett L., Boone T., et al. Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell. 1997;89:309–319. doi: 10.1016/S0092-8674(00)80209-3. PubMed DOI
Liu W., Xu C., Zhao H., Xia P., Song R., Gu J., Liu X., Bian J., Yuan Y., Liu Z. Osteoprotegerin Induces Apoptosis of Osteoclasts and Osteoclast Precursor Cells via the Fas/Fas Ligand Pathway. PLoS ONE. 2015;10:e0142519. doi: 10.1371/journal.pone.0142519. PubMed DOI PMC
Franchimont N., Reenaers C., Lambert C., Belaiche J., Bours V., Malaise M., Delvenne P., Louis E. Increased expression of receptor activator of NF-kappaB ligand (RANKL), its receptor RANK and its decoy receptor osteoprotegerin in the colon of Crohn’s disease patients. Clin. Exp. Immunol. 2004;138:491–498. doi: 10.1111/j.1365-2249.2004.02643.x. PubMed DOI PMC
Moschen A.R., Kaser A., Enrich B., Ludwiczek O., Gabriel M., Obrist P., Wolf A.M., Tilg H. The RANKL/OPG system is activated in inflammatory bowel disease and relates to the state of bone loss. Gut. 2005;54:479–487. doi: 10.1136/gut.2004.044370. PubMed DOI PMC
Valentine J.F., Sninsky C.A. Prevention and treatment of osteoporosis in patients with inflammatory bowel disease. Am. J. Gastroenterol. 1999;94:878–883. doi: 10.1111/j.1572-0241.1999.981_d.x. PubMed DOI
Kapsoritakis A.N., Kapsoritaki A.I., Davidi I.P., Lotis V.D., Manolakis A.C., Mylonis P.I., Theodoridou A.T., Germenis A.E., Potamianos S.P. Imbalance of tissue inhibitors of metalloproteinases (TIMP)—1 and—4 serum levels, in patients with inflammatory bowel disease. BMC Gastroenterol. 2008;8:55. doi: 10.1186/1471-230X-8-55. PubMed DOI PMC
Somerville R.P., Oblander S.A., Apte S.S. Matrix metalloproteinases: Old dogs with new tricks. Genome Biol. 2003;4:216. doi: 10.1186/gb-2003-4-6-216. PubMed DOI PMC
Baugh M.D., Perry M.J., Hollander A.P., Davies D.R., Cross S.S., Lobo A.J., Taylor C.J., Evans G.S. Matrix metalloproteinase levels are elevated in inflammatory bowel disease. Gastroenterology. 1999;117:814–822. doi: 10.1016/S0016-5085(99)70339-2. PubMed DOI
Lakatos G., Hritz I., Varga M.Z., Juhász M., Miheller P., Cierny G., Tulassay Z., Herszényi L. The impact of matrix metalloproteinases and their tissue inhibitors in inflammatory bowel diseases. Dig. Dis. 2012;30:289–295. doi: 10.1159/000336995. PubMed DOI
Kofla-Dlubacz A., Matusiewicz M., Krzystek-Korpacka M., Iwanczak B. Correlation of MMP-3 and MMP-9 with Crohn’s Disease Activity in Children. Dig. Dis. Sci. 2011;57:706–712. doi: 10.1007/s10620-011-1936-z. PubMed DOI PMC
Makitalo L., Rintamaki H., Tervahartiala T., Sorsa T., Kolho K.L. Serum MMPs 7-9 and their inhibitors during glucocorticoid and anti-TNF-alpha therapy in pediatric inflammatory bowel disease. Scand. J. Gastroenterol. 2012;47:785–794. doi: 10.3109/00365521.2012.677954. PubMed DOI
Crowe M.J., Doetschman T., Greenhalgh D.G. Delayed Wound Healing in Immunodeficient TGF-β1 Knockout Mice. J. Investig. Dermatol. 2000;115:3–11. doi: 10.1046/j.1523-1747.2000.00010.x. PubMed DOI
Hahm K.B. Loss of transforming growth factor beta signalling in the intestine contributes to tissue injury in inflammatory bowel disease. Gut. 2001;49:190–198. doi: 10.1136/gut.49.2.190. PubMed DOI PMC
Howe K.L., Reardon C., Wang A., Nazli A., McKay D.M. Transforming Growth Factor-β Regulation of Epithelial Tight Junction Proteins Enhances Barrier Function and Blocks Enterohemorrhagic Escherichia coli O157:H7-Induced Increased Permeability. Am. J. Pathol. 2005;167:1587–1597. doi: 10.1016/S0002-9440(10)61243-6. PubMed DOI PMC
Stallmach A., Schuppan D., Riese H.H., Matthes H., Riecken E.O. Increased collagen type III synthesis by fibroblasts isolated from strictures of patients with Crohn’s disease. Gastroenterology. 1992;102:1920–1929. doi: 10.1016/0016-5085(92)90314-O. PubMed DOI
Kader H.A., Tchernev V.T., Satyaraj E., Lejnine S., Kotler G., Kingsmore S.F., Patel D.D. Protein microarray analysis of disease activity in pediatric inflammatory bowel disease demonstrates elevated serum PLGF, IL-7, TGF-beta1, and IL-12p40 levels in Crohn’s disease and ulcerative colitis patients in remission versus active disease. Am. J. Gastroenterol. 2005;100:414–423. doi: 10.1111/j.1572-0241.2005.40819.x. PubMed DOI PMC
Miquel S., Martin R., Rossi O., Bermudez-Humaran L.G., Chatel J.M., Sokol H., Thomas M., Wells J.M., Langella P. Faecalibacterium prausnitzii and human intestinal health. Curr. Opin. Microbiol. 2013;16:255–261. doi: 10.1016/j.mib.2013.06.003. PubMed DOI
Fujimoto T., Imaeda H., Takahashi K., Kasumi E., Bamba S., Fujiyama Y., Andoh A. Decreased abundance of Faecalibacterium prausnitzii in the gut microbiota of Crohn’s disease. J. Gastroenterol. Hepatol. 2013;28:613–619. doi: 10.1111/jgh.12073. PubMed DOI
Rajca S., Grondin V., Louis E., Vernier-Massouille G., Grimaud J.C., Bouhnik Y., Laharie D., Dupas J.-L., Pillant H., Picon L., et al. Alterations in the Intestinal Microbiome (Dysbiosis) as a Predictor of Relapse After Infliximab Withdrawal in Crohn’s Disease. Inflamm. Bowel Dis. 2014;20:978–986. doi: 10.1097/mib.0000000000000036. PubMed DOI
Sokol H., Pigneur B., Watterlot L., Lakhdari O., Bermudez-Humaran L.G., Gratadoux J.J., Blugeon S., Bridonneau C., Furet J.P., Corthier G., et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA. 2008;105:16731–16736. doi: 10.1073/pnas.0804812105. PubMed DOI PMC
Quevrain E., Maubert M.A., Michon C., Chain F., Marquant R., Tailhades J., Miquel S., Carlier L., Bermudez-Humaran L.G., Pigneur B., et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut. 2016;65:415–425. doi: 10.1136/gutjnl-2014-307649. PubMed DOI PMC
Takahashi K., Nishida A., Fujimoto T., Fujii M., Shioya M., Imaeda H., Inatomi O., Bamba S., Sugimoto M., Andoh A. Reduced Abundance of Butyrate-Producing Bacteria Species in the Fecal Microbial Community in Crohn’s Disease. Digestion. 2016;93:59–65. doi: 10.1159/000441768. PubMed DOI
Jensen S.R., Mirsepasi-Lauridsen H.C., Thysen A.H., Brynskov J., Krogfelt K.A., Petersen A.M., Pedersen A.E., Brix S. Distinct inflammatory and cytopathic characteristics of Escherichia coli isolates from inflammatory bowel disease patients. Int. J. Med. Microbiol. 2015;305:925–936. doi: 10.1016/j.ijmm.2015.10.002. PubMed DOI
Iqbal N., Oliver J.R., Wagner F.H., Lazenby A.S., Elson C.O., Weaver C.T. T helper 1 and T helper 2 cells are pathogenic in an antigen-specific model of colitis. J. Exp. Med. 2002;195:71–84. doi: 10.1084/jem.2001889. PubMed DOI PMC
Feng T., Wang L., Schoeb T.R., Elson C.O., Cong Y. Microbiota innate stimulation is a prerequisite for T cell spontaneous proliferation and induction of experimental colitis. J. Exp. Med. 2010;207:1321–1332. doi: 10.1084/jem.20092253. PubMed DOI PMC
Calderon-Gomez E., Bassolas-Molina H., Mora-Buch R., Dotti I., Planell N., Esteller M., Gallego M., Marti M., Garcia-Martin C., Martinez-Torro C., et al. Commensal-specific CD4(+) cells from patients with Crohn’s disease have a t-helper 17 inflammatory profile. Gastroenterology. 2016;151:489–500. doi: 10.1053/j.gastro.2016.05.050. PubMed DOI
Casanova M.J., Chaparro M., Garcia-Sanchez V., Nantes O., Leo E., Rojas-Feria M., Jauregui-Amezaga A., Garcia-Lopez S., Huguet J.M., Arguelles-Arias F., et al. Evolution after anti-TNF discontinuation in patients with inflammatory bowel disease: A multicenter long-term follow-up study. Am. J. Gastroenterol. 2017;112:120–131. doi: 10.1038/ajg.2016.569. PubMed DOI
Serum TGF-β1 and CD14 Predicts Response to Anti-TNF-α Therapy in IBD