Faster speciation of fig-wasps than their host figs leads to decoupled speciation dynamics: Snapshots across the speciation continuum
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31338917
DOI
10.1111/mec.15190
Knihovny.cz E-zdroje
- Klíčová slova
- Papua New Guinea, altitudinal gradient, cospeciation, fig and fig-wasp mutualism, population genomics, population structure,
- MeSH
- druhová specificita MeSH
- Ficus genetika parazitologie MeSH
- fylogeneze MeSH
- interakce hostitele a patogenu genetika MeSH
- sršňovití genetika MeSH
- vznik druhů (genetika) * MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Even though speciation involving multiple interacting partners, such as plants and their pollinators, has attracted much research, most studies focus on isolated phases of the process. This currently precludes an integrated understanding of the mechanisms leading to cospeciation. Here, we examine population genetic structure across six species-pairs of figs and their pollinating wasps along an elevational gradient in New Guinea. Specifically, we test three hypotheses on the genetic structure within the examined species-pairs and find that the hypothesized genetic structures represent different phases of a single continuum, from incipient cospeciation to the full formation of new species. Our results also illuminate the mechanisms governing cospeciation, namely that fig wasps tend to accumulate population genetic differences faster than their figs, which initially decouples the speciation dynamics between the two interacting partners and breaks down their one-to-one matching. This intermediate phase is followed by genetic divergence of both partners, which may eventually restore the one-to-one matching among the fully formed species. Together, these findings integrate current knowledge on the mechanisms operating during different phases of the cospeciation process. They also reveal that the increasingly reported breakdowns in one-to-one matching may be an inherent part of the cospeciation process. Mechanistic understanding of this process is needed to explain how the extraordinary diversity of species, especially in the tropics, has emerged. Knowing which breakdowns in species interactions are a natural phase of cospeciation and which may endanger further generation of diversity seems critical in a constantly changing world.
Biodiversity Research Centre University of British Columbia Vancouver BC Canada
Center for Theoretical Study Charles University and Czech Academy of Sciences Prague Czech Republic
Department of Crop and Environment Sciences Harper Adams University Newport UK
Department of Ecology Charles University Prague Czech Republic
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute on the Environment University of Minnesota Saint Paul MN USA
New Guinea Binatang Research Centre Madang Papua New Guinea
Okinawa Institute of Science and Technology Graduate University Okinawa Japan
Zobrazit více v PubMed
Ahmed, S., Compton, S. G., Butlin, R. K., & Gilmartin, P. M. (2009). Wind-borne insects mediate directional pollen transfer between desert fig trees 160 kilometers apart. Proceedings of the National Academy of Sciences of the United States of America, 106, 20342-20347. https://doi.org/10.1073/pnas.0902213106
Althoff, D. M., Segraves, K. A., Smith, C. I., Leebens-Mack, J., & Pellmyr, O. (2012). Geographic isolation trumps coevolution as a driver of yucca and yucca moth diversification. Molecular Phylogenetics and Evolution, 62, 898-906. https://doi.org/10.1016/j.ympev.2011.11.024
Antonovics, J. (2006). Evolution in closely adjacent plant populations X: Long-term persistence of prereproductive isolation at a mine boundary. Heredity, 97, 33-37. https://doi.org/10.1038/sj.hdy.6800835
Armbruster, W. S., & Muchhala, N. (2009). Associations between floral specialization and species diversity: Cause, effect, or correlation? Evolutionary Ecology, 23, 159-179. https://doi.org/10.1007/s10682-008-9259-z
Bachman, S., Baker, W. J., Brummitt, N., Dransfield, J., & Moat, J. (2004). Elevational gradients, area and tropical island diversity: An example from the palms of New Guinea. Ecography, 27, 299-310. https://doi.org/10.1111/j.0906-7590.2004.03759.x
Bain, A., Borges, R. M., Chevallier, M. H., Vignes, H., Kobmoo, N., Peng, Y. Q., … Hossaert-Mckey, M. (2016). Geographic structuring into vicariant species-pairs in a wide-ranging, high-dispersal plant-insect mutualism: The case of Ficus racemosa and its pollinating wasps. Evolutionary Ecology, 30, 663-684. https://doi.org/10.1007/s10682-016-9836-5
Berg, C. C., & Corner, E. J. H. (Eds.) (2005). Flora Malesiana. Series I. Seed plants. Volume 17, Part 2: Moraceae (Ficus), pp. 730.
Bronstein, J. L., Dieckmann, U., & Ferrière, R. (2009). Coevolutionary dynamics and the conservation of mutualisms. In R. Ferrière, U. Dieckmann, & D. Couvet (Eds.), Evolutionary conservation biology (pp. 305-326). Cambridge, UK: Cambridge University Press.
Bushnell, B. (2014). bbmap: A fast, accurate, splice-aware aligner. Joint Genome Institute, Department of Energy. https://doi.org/10.1186/1471-2105-13-238
Byars, S. G., Parsons, Y., & Hoffmann, A. A. (2009). Effect of altitude on the genetic structure of an Alpine grass, Poa hiemata. Annals of Botany, 103, 885-899. https://doi.org/10.1093/aob/mcp018
Caro, L. M., Caycedo-Rosales, P. C., Bowie, R. C. K., Slabbekoorn, H., & Cadena, C. D. (2013). Ecological speciation along an elevational gradient in a tropical passerine bird? Journal of Evolutionary Biology, 26, 357-374. https://doi.org/10.1111/jeb.12055
Cook, J. M., & Rasplus, J. Y. (2003). Mutualists with attitude: Coevolving fig wasps and figs. Trends in Ecology and Evolution, 18, 241-248. https://doi.org/10.1016/S0169-5347(03)00062-4
Cook, J. M., & Segar, S. T. (2010). Speciation in fig wasps. Ecological Entomology, 35, 54-66. https://doi.org/10.1111/j.1365-2311.2009.01148.x
Cruaud, A., Jabbour-Zahab,R., Genson, G., Cruaud, C., Couloux, A., Kjellberg, F., … Rasplus, J.-Y. (2010). Laying the foundations for a new classification of Agaonidae (Hymenoptera: Chalcidoidea), a multilocus phylogenetic approach. Cladistics, 26, 359-387. https://doi.org/10.1111/j.1096-0031.2009.00291.x
Cruaud, A., Rønsted, N., Chantarasuwan, B., Chou, L. S., Clement, W. L., Couloux, A., … Savolainen, V. (2012). An extreme case of plant-insect codiversification: Figs and fig-pollinating wasps. Systematic Biology, 61(6), 1029-1047. https://doi.org/10.1093/sysbio/sys068
Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., … Durbin, R. (2011). The variant call format and VCFtools. Bioinformatics, 27, 2156-2158. https://doi.org/10.1093/bioinformatics/btr330
Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jmodeltest 2: More models, new heuristics and parallel computing. Nature Methods, 9(8), 772. https://doi.org/10.1038/nmeth.2109
Darwell, C. T., Al-Beidh, S., & Cook, J. M. (2014). Molecular species delimitation of a symbiotic fig-pollinating wasp species complex reveals extreme deviation from reciprocal partner specificity. BMC Evolutionary Biology, 14, 189. https://doi.org/10.1186/s12862-014-0189-9
Darwell, C. T., & Cook, J. M. (2017). Cryptic diversity in a fig wasp community-morphologically differentiated species are sympatric but cryptic species exhibit competitive exclusion. Molecular Ecology, 26, 937-950. https://doi.org/10.1111/mec.13985
Dev, S. A., Kjellberg, F., Hossaert-Mckey, M., & Borges, R. M. (2011). Fine-scale population genetic structure of two dioecious Indian keystone species, Ficus hispida and Ficus exasperata (Moraceae). Biotropica, 43, 309-316. https://doi.org/10.1111/j.1744-7429.2010.00704.x
Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11-15. https://doi.org/10.2307/4119796
Edgar, R. C. (2004). muscle: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792-1797. https://doi.org/10.1093/nar/gkh340
Ehrlich, P. R., & Raven, P. H. (2006). Butterflies and plants: A study in coevolution. Evolution, 18, 586-608. https://doi.org/10.2307/2406212
Ellstrand, N. C. (2014). Is gene flow the most important evolutionary force in plants? American Journal of Botany, 101, 737-753. https://doi.org/10.3732/ajb.1400024
Forister, M. L., & Feldman, C. R. (2011). Phylogenetic cascades and the origins of tropical diversity. Biotropica, 43, 270-278. https://doi.org/10.1111/j.1744-7429.2010.00702.x
Futuyma, D. J., & Agrawal, A. A. (2009). Macroevolution and the biological diversity of plants and herbivores. Proceedings of the National Academy of Sciences of the United States of America, 106, 18054-18061. https://doi.org/10.1073/pnas.0904106106
Galil, J., & Eisikowitch, D. (1968). Flowering cycles and fruit types of Ficus sycomorus in Israel. New Phytologist, 67, 745-758. https://doi.org/10.1111/j.1469-8137.1968.tb05497.x
Godsoe, W., Strand, E., Smith, C. I., Yoder, J. B., Esque, T. C., & Pellmyr, O. (2009). Divergence in an obligate mutualism is not explained by divergent climatic factors. New Phytologist, 183, 589-599. https://doi.org/10.1111/j.1469-8137.2009.02942.x
Haine, E. R., Martin, J., & Cook, J. M. (2006). Deep mtDNA divergences indicate cryptic species in a fig-pollinating wasp. BMC Evolutionary Biology, 6, 1-11. https://doi.org/10.1186/1471-2148-6-83
Hardy, O. J., Maggia, L., Bandou, E., Breyne, P., Caron, H., Chevallier, M.-H., … Degen, B. (2006). Fine-scale genetic structure and gene dispersal inferences in 10 Neotropical tree species. Molecular Ecology, 15, 559-571. https://doi.org/10.1111/j.1365-294X.2005.02785.x
Hembry, D. H., & Althoff, D. M. (2016). Diversification and coevolution in brood pollination mutualisms: Windows into the role of biotic interactions in generating biological diversity. American Journal of Botany, 103, 1783-1792. https://doi.org/10.3732/ajb.1600056
Hembry, D. H., Yoder, J. B., & Goodman, K. R. (2014). Coevolution and the diversification of life. The American Naturalist, 184, 425-438. https://doi.org/10.1086/677928
Hossaert-McKey, M., Proffit, M., Soler, C. C. L., Chen, C., Bessière, J.-M., Schatz, B., & Borges, R. M. (2016). How to be a dioecious fig: Chemical mimicry between sexes matters only when both sexes flower synchronously. Scientific Reports, 6, 21236. https://doi.org/10.1038/srep21236
Huelsenbeck, J. P., Rannala, B., & Larget, B. (2002). A statistical perspective for reconstructing the history of host-parasite associations. In R. D. M. Page (Ed.), Tangled trees: Phylogenies, cospeciation and coevolution (pp. 93-119). Chicago, NY: Chicago University Press.
Jones, M., Ghoorah, A., & Blaxter, M. (2011). jmotu and taxonerator: Turning DNA barcode sequences into annotated operational taxonomic units. PLoS ONE, 6, e19259. https://doi.org/10.1371/journal.pone.0019259
Jordano, P., Garcia, C., Godoy, J. A., & Garcia-Castano, J. L. (2007). Differential contribution of frugivores to complex seed dispersal patterns. Proceedings of the National Academy of Sciences of the United States of America, 104, 3278-3282. https://doi.org/10.1073/pnas.0606793104
Jousselin, E., Van Noort, S., Berry, V., Rasplus, J.-Y., Rønsted, N., Erasmus, J. C., & Greeff, J. M. (2008). One fig to bind them all: Host conservatism in a fig wasp community unraveled by cospeciation analyses among pollinating and nonpollinating fig wasps. Evolution, 62, 1777-1797. https://doi.org/10.1111/j.1558-5646.2008.00406.x
Kawakita, A. (2010). Evolution of obligate pollination mutualism in the tribe Phyllantheae (Phyllanthaceae). Plant Species Biology, 25, 3-19. https://doi.org/10.1111/j.1442-1984.2009.00266.x
Kiester, A. R., Lande, R., & Schemske, D. W. (1984). Models of coevolution and speciation in plants and their pollinators. The American Naturalist, 124, 220-243. https://doi.org/10.1086/284265
Kirkpatrick, M., & Barton, N. H. (1997). Evolution of a species' range. The American Naturalist, 150, 1-23. https://doi.org/10.1086/286054
Kobmoo, N., Hossaert-Mckey, M., Rasplus, J.-Y., & Kjellberg, F. (2010). Ficus racemosa is pollinated by a single population of a single agaonid wasp species in continental South-East Asia. Molecular Ecology, 19, 2700-2712. https://doi.org/10.1111/j.1365-294X.2010.04654.x
Körner, C. (2007). The use of “altitude” in ecological research. Trends in Ecology and Evolution, 22, 569-574. https://doi.org/10.1016/j.tree.2007.09.006
Kreft, H., & Jetz, W. (2007). Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences of the United States of America, 104, 5925-5930. https://doi.org/10.1073/pnas.0608361104
Lawson, D. J., Hellenthal, G., Myers, S., & Falush, D. (2012). Inference of population structure using dense haplotype data. PLOS Genetics, 8, e1002453. https://doi.org/10.1371/journal.pgen.1002453
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., … Durbin, R. (2009). The sequence Alignment/Map format and SAMtools. Bioinformatics, 25, 2078-2079. https://doi.org/10.1093/bioinformatics/btp352
Li, H., Wang, Z., & Hu, B. (2015). Four new species of Epicephala Meyrick, 1880 (Lepidoptera, Gracillariidae) associated with two species of Glochidion (Phyllanthaceae) from Hainan Island in China. ZooKeys, 508, 53-67. https://doi.org/10.3897/zookeys.508.9479
Liu, M., Compton, S. G., Peng, F. E., Zhang, J., & Chen, X. Y. (2015). Movements of genes between populations: Are pollinators more effective at transferring their own or plant genetic markers? Proceedings of the Royal Society B: Biological Sciences, 282, 1-9. https://doi.org/10.1098/rspb.2015.0290
Liu, M., Zhao, R., Chen, Y., Zhang, J., Compton, S. G., & Chen, X. Y. (2014). Competitive exclusion among fig wasps achieved via entrainment of host plant flowering phenology. PLoS ONE, 9, e97783. https://doi.org/10.1371/journal.pone.0097783
Lomáscolo, S. B., Levey, D. J., Kimball, R. T., Bolker, B. M., & Alborn, H. T. (2010). Dispersers shape fruit diversity in Ficus (Moraceae). Proceedings of the National Academy of Sciences of the United States of America, 107(33), 14668-14672. https://doi.org/10.1073/pnas.1008773107
Lopez-Vaamonde, C., Wikström, N., Kjer, K. M., Weiblen, G. D., Rasplus, J. Y., Machado, C. A., & Cook, J. M. (2009). Molecular dating and biogeography of fig-pollinating wasps. Molecular Phylogenetics and Evolution, 52, 715-726. https://doi.org/10.1016/j.ympev.2009.05.028
Madden, T. (2002). The blast sequence analysis tool. In J. McEntryre & J. Ostell (Eds.), The NCBI handbook (pp. 1-15). Bethesda, MD: National Center for Biotechnology.
Malinsky, M., Trucchi, E., Lawson, D. J., & Falush, D. (2018). radpainter and fineradstructure: Population Inference from RADseq data. Molecular Biology and Evolution, 35, 1284-1290. https://doi.org/10.1093/molbev/msy023
Marki, P. Z., Sam, K., Koane, B., Bolding Kristensen, J., Kennedy, J. D., &Jønsson, K. A. (2016). New and noteworthy bird records from the Mt. Wilhelm elevational gradient, Papua New Guinea study area and methods. Bulletin of the British Ornithologists' Club, 136, 263-271.
McAlpine, J. R., Keig, G., Falls, R., & CSIRO. (1983). Climate of Papua New Guinea. Canberra, ACT: Commonwealth Scientific and Industrial Research Organization in association with Australian National University Press.
McCain, C. M., & Grytnes, J.-A. (2010). Elevational gradients in species richness. Encylcopedia of Life Sciences, 15, 1-10. https://doi.org/10.1002/9780470015902.a0022548
Moe, A. M., Clement, W., & Weiblen, G. D. (2012). Rapid evolution of pollinator-mediated plant reproductive isolation. In R. Singh, X. Jianping, & R. Kulathinal (Eds.), Rapidly evolving genes and genetic systems (pp. 266-273). Oxford, UK: Oxford University Press.
Moe, A. M., Rossi, D. R., & Weiblen, G. D. (2011). Pollinator sharing in dioecious figs (Ficus: Moraceae). Biological Journal of the Linnean Society, 103, 546-558. https://doi.org/10.1111/j.1095-8312.2011.01669.x
Moe, A. M., & Weiblen, G. D. (2012). Pollinator-mediated reproductive isolation among dioecious fig species (Ficus, moraceae). Evolution, 66, 3710-3721. https://doi.org/10.1111/j.1558-5646.2012.01727.x
Mori, K., Shirasawa, K., Nogata, H., Hirata, C., Tashiro, K., Habu, T., … Ikegami, H. (2017). Identification of RAN1 orthologue associated with sex determination through whole genome sequencing analysis in fig (Ficus carica L.). Scientific Reports, 7, 41124. https://doi.org/10.1038/srep41124
Nosil, P., Harmon, L. J., & Seehausen, O. (2009). Ecological explanations for (incomplete) speciation. Trends in Ecology and Evolution, 24, 145-156. https://doi.org/10.1016/j.tree.2008.10.011
Pellmyr, O. (1999). Systematic revision of the yucca moths in the Tegeticula yuccasella complex (Lepidoptera: Prodoxidae) north of Mexico. Systematic Entomology, 24, 243-271. https://doi.org/10.1046/j.1365-3113.1999.00079.x
Piatscheck, F., Van Goor, J., Houston, D. D., & Nason, J. D. (2018). Ecological factors associated with pre-dispersal predation of fig seeds and wasps by fig-specialist lepidopteran larvae. Acta Oecologica, 90, 151-159. https://doi.org/10.1016/j.actao.2018.03.001
Proffit, M., Chen, C., Soler, C., Bessière, J. M., Schatz, B., & Hossaert-Mckey, M. (2009). Can chemical signals, responsible for mutualistic partner encounter, promote the specific exploitation of nursery pollination mutualisms? - The case of figs and fig wasps. Entomologia Experimentalis et Applicata, 131, 46-57. https://doi.org/10.1111/j.1570-7458.2009.00823.x
Puillandre, N., Lambert, A., Brouillet, S., & Achaz, G. (2012). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology, 21, 1864-1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x
Rahbek, C., &Museum, Z. (1995). The elevational gradient of species richness: A uniform pattern? Ecography, 2, 200-205. https://doi.org/10.1111/j.1600-0587.1995.tb00341.x
Rasplus, J.-Y. (2011). The one-to-one species specificity of the Ficus-Agaoninae mutualism: How casual? In L. G. J. van der Maesen, X. M. van der Burgt, & J. M. van der Medenbach de Rooy (Eds.), The biodiversity of African plants (pp. 639-649). Dordrecht, The Netherlands: Kluwer Academic Publishers.
Reis, T. S., Ciampi-Guillardi, M., Bajay, M. M., de Souza, A. P., & dos Santos, F. A. M. (2015). Elevation as a barrier: Genetic structure for an Atlantic rain forest tree (Bathysa australis) in the Serra do Mar mountain range, SE Brazil. Ecology and Evolution, 5, 1919-1931. https://doi.org/10.1002/ece3.1501
Rieseberg, L. H., & Willis, J. H. (2007). Plant speciation. Science, 317, 910-914.https://doi.org/10.1126/science.1137729
Rull, V. (2011). Neotropical biodiversity: Timing and potential drivers. Trends in Ecology and Evolution, 26, 508-513. https://doi.org/10.1016/j.tree.2011.05.011
Russello, M. A., Waterhouse, M. D., Etter, P. D., & Johnson, E. A. (2015). From promise to practice: Pairing non-invasive sampling with genomics in conservation. PeerJ, 3, e1106. https://doi.org/10.7717/peerj.1106
Sam, K., & Koane, B. (2014). New avian records along the elevational gradient of Mt. Wilhelm, Papua New Guinea. Bulletin of the British Ornithologists' Club, 134, 116-133.
Sam, K., Koane, B., Jeppy, S., Sykorova, J., & Novotny, V. (2017). Diet of land birds along an elevational gradient in Papua New Guinea. Scientific Reports, 7, 44018. https://doi.org/10.1038/srep44018
Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M., & Roy, K. (2009). Is there a latitudinal gradient in the importance of biotic interactions? Annual Review of Ecology, Evolution, and Systematics, 40, 245-269. https://doi.org/10.1146/annurev.ecolsys.39.110707.173430
Segar, S. T., Lopez-Vaamonde, C., Rasplus, J. Y., & Cook, J. M. (2012). The global phylogeny of the subfamily Sycoryctinae (Pteromalidae): Parasites of an obligate mutualism. Molecular Phylogenetics and Evolution, 65, 116-125. https://doi.org/10.1016/j.ympev.2012.05.030
Segar, S. T., Volf, M., Sisol, M., Pardikes, N. A., & Souto-Vilarós, D. (2019). Chemical cues and genetic divergence in insects on plants: Conceptual cross pollination between mutualistic and antagonistic systems. Current Opinion in Insect Science, 32, 83-90. https://doi.org/10.1016/j.cois.2018.11.009
Segar, S. T., Volf, M., Zima, J., Isua, B., Sisol, M., Sam, L., … Novotny, V. (2017). Speciation in a keystone plant genus is driven by elevation: A case study in New Guinean Ficus. Journal of Evolutionary Biology, 30, 512-523. https://doi.org/10.1111/jeb.13020
Shanahan, M. (2000). Ficus seed dispersal guilds: Ecology, evolution and conservation implications. Ph.D. thesis, University of Leeds, UK.
Shanahan, M., So, S., Compton, S. G., & Corlett, R. T. (2001). Fig-eating by vertebrate frugivores: A global review. Biological Reviews, 76, 529-572. https://doi.org/10.1017/S1464793101005760
Shilton, L. A., Altringham, J. D., Compton, S. G., & Whittaker, R. J. (1999). Old World fruit bats can be long-distance seed dispersers through extended retention of viable seeds in the gut. Proceedings of the Royal Society B: Biological Sciences, 266, 219-223. https://doi.org/10.1098/rspb.1999.0625
Silvieus, S. I., Clement, W. L., & Weiblen, G. D. (2008). Cophylogeny of figs, pollinators, gallers, and parasitoids. In K. Tilmon (Ed.), Specialization, speciation and radiation: The Evolutionary biology of herbivorous insects (pp. 225-239). Berkley and Los Angeles, CA: University of California Press.
Souto-Vilarós, D., Machac, A., Michalek, J., Darwell, C. T., Sisol, M., Kuyaiva, T., … Segar, S. T. (2019). Data from: Faster speciation of fig-wasps than their host figs leads to decoupled speciation dynamics: Snapshots across the speciation continuum. Dryad Digital Repository, https://doi.org/10.5061/dryad.5m4dn73
Souto-Vilarós, D., Proffit, M., Buatois, B., Rindos, M., Sisol, M., Kuyaiva, T., … Segar, S. T. (2018). Pollination along an elevational gradient mediated both by floral scent and pollinator compatibility in the fig and fig-wasp mutualism. Journal of Ecology, 106, 2256-2273. https://doi.org/10.1111/1365-2745.12995
Stamatakis, A. (2014). raxml version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312-1313. https://doi.org/10.1093/bioinformatics/btu033
Thornton, I. W. B., Cook, S., Edwards, J. S., Harrison, R. D., Schipper, C., Shanahan, M., … Yamuna, R. (2001). Colonization of volcano long Islands Papua New Guinea and an emergent island Motmot in its caldera lake Overview and discussion. Journal of Biogeography, 28, 1389-1408. https://doi.org/10.1046/j.1365-2699.2001.00638.x
Toussaint, E. F. A., Hall, R., Monaghan, M. T., Sagata, K., Ibalim, S., Shaverdo, H. V., … Balke, M. (2014). The towering orogeny of New Guinea as a trigger for arthropod megadiversity. Nature Communications, 5, 4001. https://doi.org/10.1038/ncomms5001
Van der Niet, T., Peakall, R., & Johnson, S. D. (2014). Pollinator-driven ecological speciation in plants: New evidence and future perspectives. Annals of Botany, 113, 199-211. https://doi.org/10.1093/aob/mct290
Venkateswaran, V., Kumble, A. L. K., & Borges, R. M. (2018). Resource dispersion influences dispersal evolution of highly insulated insect communities. Biology Letters, 14, 20180111. https://doi.org/10.1098/rsbl.2018.0111
Wachi, N., Kusumi, J., Tzeng, H. Y., & Su, Z. H. (2016). Genome-wide sequence data suggest the possibility of pollinator sharing by host shift in dioecious figs (Moraceae, Ficus). Molecular Ecology, 25, 5732-5746. https://doi.org/10.1111/mec.13876
Weiblen, G. D. (2001). Pylogenetic relationships of fig wasps pollinating functionally dioecious figs based on mitochondrial DNA sequences and morphology. Systematic Biology, 50, 243-267.
Weiblen, G. D. (2004). Correlated evolution in fig pollination. Systematic Biology, 53, 128-139. https://doi.org/10.1080/10635150490265012
Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370.
Whitworth, T. L., Dawson, R. D., Magalon, H., & Baudry, E. (2007). DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae). Proceedings of the Royal Society B: Biological Sciences, 274, 1731-1739. https://doi.org/10.1098/rspb.2007.0062
Wu, C. I. (2001). The genic view of the process of speciation. Journal of Evolutionary Biology, 14, 851-865. https://doi.org/10.1046/j.1420-9101.2001.00335.x
Xiao, J.-H., Yue, Z., Jia, L.-Y., Yang, X.-H., Niu, L.-H., Wang, Z., … Huang, D.-W. (2013). Obligate mutualism within a host drives the extreme specialization of a fig wasp genome. Genome Biology, 14, R141. https://doi.org/10.1186/gb-2013-14-12-r141
Yu, H., Tian, E., Zheng, L., Deng, X., Cheng, Y., Chen, L., … Kjellberg, F. (2019). Multiple parapatric pollinators have radiated across a continental fig tree displaying clinal genetic variation. Molecular Ecology, 28, 2391-2405. https://doi.org/10.1111/mec.15046
The Dynamics of Bird Diversity in the New World
GENBANK
MN168894, BMN169018