Transcription of specific auxin efflux and influx carriers drives auxin homeostasis in tobacco cells

. 2019 Nov ; 100 (3) : 627-640. [epub] 20190831

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31349380

Auxin concentration gradients are informative for the transduction of many developmental cues, triggering downstream gene expression and other responses. The generation of auxin gradients depends significantly on cell-to-cell auxin transport, which is supported by the activities of auxin efflux and influx carriers. However, at the level of individual plant cell, the co-ordination of auxin efflux and influx largely remains uncharacterized. We addressed this issue by analyzing the contribution of canonical PIN-FORMED (PIN) proteins to the carrier-mediated auxin efflux in Nicotiana tabacum L., cv. Bright Yellow (BY-2) tobacco cells. We show here that a majority of canonical NtPINs are transcribed in cultured cells and in planta. Cloning of NtPIN genes and their inducible overexpression in tobacco cells uncovered high auxin efflux activity of NtPIN11, accompanied by auxin starvation symptoms. Auxin transport parameters after NtPIN11 overexpression were further assessed using radiolabelled auxin accumulation and mathematical modelling. Unexpectedly, these experiments showed notable stimulation of auxin influx, which was accompanied by enhanced transcript levels of genes for a specific auxin influx carrier and by decreased transcript levels of other genes for auxin efflux carriers. A similar transcriptional response was observed upon removal of auxin from the culture medium, which resulted in decreased auxin efflux. Overall, our results revealed an auxin transport-based homeostatic mechanism for the maintenance of endogenous auxin levels. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at http://osf.io/ka97b/.

Zobrazit více v PubMed

An, G., Watson, B.D., Stachel, S., Gordon, M.P. and Nester, E.W. (1985) New cloning vehicles for transformation of higher plants. EMBO J. 4, 277-284.

Band, L.R., Wells, D.M., Fozard, J.A. et al. (2014) Systems analysis of auxin transport in the Arabidopsis root apex. Plant Cell, 26, 862-875.

Barbez, E., Kubeš, M., Rolčík, J. et al. (2012) A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature, 485, 119-122.

Barbez, E., Laňková, M., Pařezová, M., Maizel, A., Zažímalová, E., Petrášek, J., Friml, J. and Kleine-Vehn, J. (2013) Single-cell-based system to monitor carrier driven cellular auxin homeostasis. BMC Plant Biol. 13, 20.

Barbosa, I.C.R., Hammes, U.Z. and Schwechheimer, C. (2018) Activation and polarity control of PIN-FORMED auxin transporters by phosphorylation. Trends Plant Sci. 23, 523-538.

Benková, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertová, D., Jürgens, G. and Friml, J. (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 115, 591-602.

Bennett, T. (2015) PIN proteins and the evolution of plant development. Trends Plant Sci. 20, 498-507.

Bennett, T., Brockington, S.F., Rothfels, C. et al. (2014) Paralogous radiations of PIN proteins with multiple origins of noncanonical PIN structure. Mol. Biol. Evol. 31, 2042-2060.

Blilou, I., Xu, J., Wildwater, M., Willemsen, V., Paponov, I., Friml, J., Heidstra, R., Aida, M., Palme, K. and Scheres, B. (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature, 433, 39-44.

Delbarre, A., Müller, P., Imhoff, V. and Guern, J. (1996) Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta, 198, 532-541.

Guindon, S. and Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696-704.

Horton, R.M., Hunt, H.D., Ho, S.N., Pullen, J.K. and Pease, L.R. (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene, 77, 61-68.

Hošek, P., Kubeš, M., Laňková, M., Dobrev, P.I., Klíma, P., Kohoutova, M., Petrášek, J., Hoyerová, K., Jiřina, M. and Zažímalová, E. (2012) Auxin transport at cellular level: new insights supported by mathematical modelling. J. Exp. Bot. 63, 3815-3827.

Kamimoto, Y., Terasaka, K., Hamamoto, M. et al. (2012) Arabidopsis ABCB21 is a facultative auxin importer/exporter regulated by cytoplasmic auxin concentration. Plant Cell Physiol. 53, 2090-2100.

Kato, K., Matsumoto, T., Koiwai, S., Mizusaki, S., Nishida, K., Nogushi, M. and Tamaki, E. (1972) Liquid suspension culture of tobacco cells. In Ferment Technology Today. (Terui, G., ed). Osaka: Society of Fermentation Technology, pp. 689-695.

Kramer, E.M. and Ackelsberg, E.M. (2015) Auxin metabolism rates and implications for plant development. Front. Plant Sci. 6, 1-8.

Kubeš, M., Yang, H., Richter, G.L. et al. (2012) The Arabidopsis concentration-dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis. Plant J. 69, 640-654.

Leitner, J., Petrášek, J., Tomanov, K., Retzer, K., Pařezová, M., Korbei, B., Bachmair, A., Zazimalova, E. and Luschnig, C. (2012) Lysine63-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally controlled adaptation of Arabidopsis root growth. Proc. Natl Acad. Sci. USA, 109, 8322-8327.

Ljung, K. (2013) Auxin metabolism and homeostasis during plant development. Development, 140, 943-950.

Martinez, C.C., Koenig, D., Chitwood, D.H. and Sinha, N.R. (2016) A sister of PIN1 gene in tomato (Solanum lycopersicum) defines leaf and flower organ initiation patterns by maintaining epidermal auxin flux. Dev. Biol. 419, 85-98.

Mellor, N., Péret, B., Porco, S., Sairanen, I., Ljung, K., Bennett, M. and King, J. (2015) Modelling of Arabidopsis LAX3 expression suggests auxin homeostasis. J. Theor. Biol. 366, 57-70.

Mellor, N., Band, L.R., Pěnčík, A. et al. (2016) Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis. Proc. Natl Acad. Sci. USA, 113, 11022-11027.

Middleton, A.M., Dal Bosco, C., Chlap, P. et al. (2018) Data-driven modeling of intracellular auxin fluxes indicates a dominant role of the ER in controlling nuclear auxin uptake. Cell Rep. 22, 2809-2817.

Miyazawa, Y., Sakai, A., Miyagishima, S., Takano, H., Kawano, S. and Kuroiwa, S. (1999) Auxin and cytokinin have opposite effects on amyloplast development and the expression of starch synthesis genes in cultured bright yellow-2 tobacco cells. Plant Physiol. 121, 461-469.

Nakajima, H., Yokota, T., Matsumoto, T., Noguchi, M. and Takahashi, N. (1979) Relationship between hormone content and autonomy in various autonomous tobacco cells cultured in suspension. Plant Cell Physiol. 29, 1489-1499.

O'Connor, D.L., Runions, A., Sluis, A., Bragg, J., Vogel, J.P., Prusinkiewicz, P. and Hake, S. (2014) A division in PIN-mediated auxin patterning during organ initiation in grasses. PLoS Comput. Biol. 10, 21-24.

O'Connor, D.L., Elton, S., Ticchiarelli, F., Hsia, M.M., Vogel, J.P. and Leyser, O. (2017) Cross-species functional diversity within the PIN auxin efflux protein family. eLife, 6, 1-29.

Opperman, C.H., Lommel, S.A., Sosisnski, B.R., Lakey, N. and Gadani, F. (2003) The tobacco genome initiative | CORESTA. In The tobacco genome initiative. CORESTA Meeting, Agronomy/Phytopathology, Bucharest, p. AP 16.

Paponov, I.A., Paponov, M., Teale, W., Menges, M., Chakrabortee, S., Murray, J.A.H. and Palme, K. (2008) Comprehensive transcriptome analysis of auxin responses in Arabidopsis. Mol. Plant, 1, 321-337.

Paque, S. and Weijers, D. (2016) Q&A: auxin: the plant molecule that influences almost anything. BMC Biol. 14, 1-5.

Péret, B., Swarup, K., Ferguson, A. et al. (2012) AUX/LAX Genes encode a family of auxin influx transporters that perform distinct functions during Arabidopsis development. Plant Cell, 24, 2874-2885.

Petrášek, J. and Friml, J. (2009) Auxin transport routes in plant development. Development, 136, 2675-2688.

Petrášek, J., Černá, A., Schwarzerová, K., Elčkner, M., Morris, D.A. and Zažímalová, E. (2003) Do phytotropins inhibit auxin efflux by impairing vesicle traffic? Plant Physiol. 131, 254-3.

Petrášek, J., Mravec, J., Bouchard, R. et al. (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science, 312, 914-918.

Porco, S., Larrieu, A., Du, Y. et al. (2016a) Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3. Development, 143, 3340-3349.

Porco, S., Pěnčík, A., Rashed, A. et al. (2016b) Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis. Proc. Natl Acad. Sci. USA, 113, 11016-11021.

Reemer, J. and Murphy, A. (2014) Intercellular transport of auxin. In Auxin and Its Role in Plant Development. (Zažímalová, E., Petrášek, J. and Benková, E., eds). Vienna: Springer, pp. 75-100.

Robert, H.S., Grunewald, W., Sauer, M., Cannoot, B., Soriano, M., Swarup, R., Weijers, D., Bennett, M., Boutilier, K. and Friml, J. (2015) Plant embryogenesis requires AUX/LAX-mediated auxin influx. Development, 142, 702-711.

Roy, S., Robson, F., Lilley, J. et al. (2017) MtLAX2, a functional homologue of the Arabidopsis auxin influx transporter AUX1, is required for nodule organogenesis. Plant Physiol. 174, 326-338.

Ruiz Rosquete, M., Barbez, E. and Kleine-Vehn, J. (2012) Cellular auxin homeostasis: gatekeeping is housekeeping. Mol. Plant, 5, 772-786.

Sakai, A., Miyazawa, Y. and Kuroiwa, T. (2004) Studies on dynamic changes of organelles using tobacco BY-2 as the model plant cell line. Biotechnol. Agric. For. 53, 193.

Scheuring, D. and Kleine-Vehn, J. (2014) In Intracellular Auxin Transport. In Auxin and Its Role in Plant Development. (Zažímalová, E., Petrášek, J. and Benková, E., eds). Vienna: Springer, pp. 61-73.

Shimizu, T., Eguchi, K., Nishida, I., Laukens, K., Witters, E., Van Onckelen, H. and Nagata, T. (2006) A novel cell division factor from tobacco 2B-13 cells that induced cell division in auxin-starved tobacco BY-2 cells. Naturwissenschaften, 93, 278-285.

Sierro, N., Battey, J.N.D., Ouadi, S., Bakaher, N., Bovet, L., Willig, A., Goepfert, S., Peitsch, M.C. and Ivanov, N.V. (2014) The tobacco genome sequence and its comparison with those of tomato and potato. Nat. Commun. 5, 1-9.

Simon, S., Skůpa, P., Viaene, T. et al. (2016) PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis. New Phytol. 211, 65-74.

Singh, G., Retzer, K., Vosolsobě, S. and Napier, R. (2018) Advances in understanding the mechanism of action of the auxin permease aux1. Int. J. Mol. Sci. 19, 9-11.

Skalický, V., Kubeš, M., Napier, R. and Novák, O. (2018) Auxins and cytokinins-the role of subcellular organization on homeostasis. Int. J. Mol. Sci. 19, pii: E3115.

Spitzer, M., Wildenhain, J., Rappsilber, J. and Tyers, M. (2014) BoxPlotR: a web tool for generation of box plots. Nat. Methods, 11, 121-122.

Swarup, K., Benková, E., Swarup, R. et al. (2008) The auxin influx carrier LAX3 promotes lateral root emergence. Nat. Cell Biol. 10, 946-954.

Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729.

Vanneste, S. and Friml, J. (2009) Auxin: a trigger for change in plant development. Cell, 136, 1005-1016.

Vieten, A., Vanneste, S., Wisniewska, J., Benková, E., Benjamins, R., Beeckman, T., Luschnig, C. and Friml, J. (2005) Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development, 132, 4521-4531.

Weijers, D. and Wagner, D. (2016) Transcriptional responses to the auxin hormone. Annu. Rev. Plant Biol. 67, 539-574.

Xu, J. and Scheres, B. (2005) Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 function in epidermal cell polarity. Plant Cell, 17, 525-536.

Žádníková, P., Petrášek, J., Marhavý, P. et al. (2010) Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development, 137, 607-617.

Zhang, J., Lin, J.E., Harris, C., Campos Mastrotti Pereira, F., Wu, F., Blakeslee, J.J. and Peer, W.A. (2016) DAO1 catalyzes temporal and tissue-specific oxidative inactivation of auxin in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA, 113, 11010-11015.

Zuo, J., Niu, Q.-W. and Chua, N.-H. (2000) An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J. 24, 265-273.

Zobrazit více v PubMed

GENBANK
AF309825.2, KP143727, KC425459, KC433528, AF120093

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...