Plasticity in the Human Gut Microbiome Defies Evolutionary Constraints
Language English Country United States Media electronic
Document type Comparative Study, Journal Article, Research Support, Non-U.S. Gov't
Grant support
R35 GM128716
NIGMS NIH HHS - United States
PubMed
31366708
PubMed Central
PMC6669335
DOI
10.1128/msphere.00271-19
PII: 4/4/e00271-19
Knihovny.cz E-resources
- Keywords
- evolution, microbiome, primate,
- MeSH
- Bacteria classification isolation & purification MeSH
- Diet * MeSH
- Feces microbiology MeSH
- Phylogeny MeSH
- Genetic Variation * MeSH
- Humans MeSH
- Evolution, Molecular * MeSH
- Primates microbiology MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Gastrointestinal Microbiome * MeSH
- Life Style MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
- Names of Substances
- RNA, Ribosomal, 16S MeSH
The gut microbiome of primates, including humans, is reported to closely follow host evolutionary history, with gut microbiome composition being specific to the genetic background of its primate host. However, the comparative models used to date have mainly included a limited set of closely related primates. To further understand the forces that shape the primate gut microbiome, with reference to human populations, we expanded the comparative analysis of variation among gut microbiome compositions and their primate hosts, including 9 different primate species and 4 human groups characterized by a diverse set of subsistence patterns (n = 448 samples). The results show that the taxonomic composition of the human gut microbiome, at the genus level, exhibits increased compositional plasticity. Specifically, we show unexpected similarities between African Old World monkeys that rely on eclectic foraging and human populations engaging in nonindustrial subsistence patterns; these similarities transcend host phylogenetic constraints. Thus, instead of following evolutionary trends that would make their microbiomes more similar to that of conspecifics or more phylogenetically similar apes, gut microbiome composition in humans from nonindustrial populations resembles that of generalist cercopithecine monkeys. We also document that wild cercopithecine monkeys with eclectic diets and humans following nonindustrial subsistence patterns harbor high gut microbiome diversity that is not only higher than that seen in humans engaging in industrialized lifestyles but also higher compared to wild primates that typically consume fiber-rich diets.IMPORTANCE The results of this study indicate a discordance between gut microbiome composition and evolutionary history in primates, calling into question previous notions about host genetic control of the primate gut microbiome. Microbiome similarities between humans consuming nonindustrialized diets and monkeys characterized by subsisting on eclectic, omnivorous diets also raise questions about the ecological and nutritional drivers shaping the human gut microbiome. Moreover, a more detailed understanding of the factors associated with gut microbiome plasticity in primates offers a framework to understand why humans following industrialized lifestyles have deviated from states thought to reflect human evolutionary history. The results also provide perspectives for developing therapeutic dietary manipulations that can reset configurations of the gut microbiome to potentially improve human health.
Department of Animal and Range Sciences Montana State University Bozeman Montana USA
Department of Animal Science University of Minnesota Twin Cities St Paul Minnesota USA
Department of Animal Sciences University of Illinois at Urbana Champaign Champaign Illinois USA
Department of Anthropology Dartmouth College Hanover New Hampshire USA
Department of Anthropology Northwestern University Evanston Illinois USA
Department of Anthropology Purdue University West Lafayette Indiana USA
Department of Anthropology University of Colorado Boulder Colorado USA
Department of Anthropology University of Illinois at Urbana Champaign Champaign Illinois USA
Department of Anthropology University of Nevada Las Vegas Nevada USA
Department of Anthropology University of North Carolina Wilmington North Carolina USA
Department of Biology Loyola University Chicago Chicago Illinois USA
Department of Microbiology University of Illinois at Urbana Champaign Champaign Illinois USA
Institute of Vertebrate Biology The Czech Academy of Sciences Brno Czech Republic
J Craig Venter Institute La Jolla California USA
Konrad Lorenz Institute for Evolution and Cognition Research Klosterneuburg Austria
Liberec Zoo Liberec Czech Republic
World Wildlife Fund Dzanga Sangha Protected Areas Bayanga Central African Republic
See more in PubMed
Gomez A, Petrzelkova KJ, Burns MB, Yeoman CJ, Amato KR, Vlckova K, Modry D, Todd A, Jost Robinson CA, Remis MJ, Torralba MG, Morton E, Umaña JD, Carbonero F, Gaskins HR, Nelson KE, Wilson BA, Stumpf RM, White BA, Leigh SR, Blekhman R. 2016. Gut microbiome of coexisting BaAka pygmies and Bantu reflects gradients of traditional subsistence patterns. Cell Rep 14:2142–2153. doi:10.1016/j.celrep.2016.02.013. PubMed DOI
Obregon-Tito AJ, Tito RY, Metcalf J, Sankaranarayanan K, Clemente JC, Ursell LK, Zech Xu Z, Van Treuren W, Knight R, Gaffney PM, Spicer P, Lawson P, Marin-Reyes L, Trujillo-Villarroel O, Foster M, Guija-Poma E, Troncoso-Corzo L, Warinner C, Ozga AT, Lewis CM. 2015. Subsistence strategies in traditional societies distinguish gut microbiomes. Nat Commun 6:6505. doi:10.1038/ncomms7505. PubMed DOI PMC
Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, Basaglia G, Turroni S, Biagi E, Peano C, Severgnini M, Fiori J, Gotti R, De Bellis G, Luiselli D, Brigidi P, Mabulla A, Marlowe F, Henry AG, Crittenden AN. 2014. Gut microbiome of the Hadza hunter-gatherers. Nat Commun 5:3654. doi:10.1038/ncomms4654. PubMed DOI PMC
Smits SA, Leach J, Sonnenburg ED, Gonzalez CG, Lichtman JS, Reid G, Knight R, Manjurano A, Changalucha J, Elias JE, Dominguez-Bello MG, Sonnenburg JL. 2017. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357:802–806. doi:10.1126/science.aan4834. PubMed DOI PMC
Moeller AH, Li Y, Mpoudi Ngole E, Ahuka-Mundeke S, Lonsdorf EV, Pusey AE, Peeters M, Hahn BH, Ochman H. 2014. Rapid changes in the gut microbiome during human evolution. Proc Natl Acad Sci U S A 111:16431–16435. doi:10.1073/pnas.1419136111. PubMed DOI PMC
Ochman H, Worobey M, Kuo C-H, Ndjango J-B, Peeters M, Hahn BH, Hugenholtz P. 2010. Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol 8:e1000546. doi:10.1371/journal.pbio.1000546. PubMed DOI PMC
Amato KR, Sanders JG, Song SJ, Nute M, Metcalf JL, Thompson LR, Morton JT, Amir A, McKenzie VJ, Humphrey G, Gogul G, Gaffney J, Baden AL, Britton GAO, Cuozzo FP, Di Fiore A, Dominy NJ, Goldberg TL, Gomez A, Kowalewski MM, Lewis RJ, Link A, Sauther ML, Tecot S, White BA, Nelson KE, Stumpf RM, Knight R, Leigh SR. 2019. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J 13:576–587. doi:10.1038/s41396-018-0175-0. PubMed DOI PMC
Nishida AH, Ochman H. 2018. Rates of gut microbiome divergence in mammals. Mol Ecol 27:1884–1897. doi:10.1111/mec.14473. PubMed DOI PMC
De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107:14691–14696. doi:10.1073/pnas.1005963107. PubMed DOI PMC
Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI. 2012. Human gut microbiome viewed across age and geography. Nature 486:222–227. doi:10.1038/nature11053. PubMed DOI PMC
Rampelli S, Schnorr SL, Consolandi C, Turroni S, Severgnini M, Peano C, Brigidi P, Crittenden AN, Henry AG, Candela M. 2015. Metagenome sequencing of the Hadza hunter-gatherer gut microbiota. Curr Biol 25:1682–1693. doi:10.1016/j.cub.2015.04.055. PubMed DOI
Hansen MEB, Rubel MA, Bailey AG, Ranciaro A, Thompson SR, Campbell MC, Beggs W, Dave JR, Mokone GG, Mpoloka SW, Nyambo T, Abnet C, Chanock SJ, Bushman FD, Tishkoff SA. 2019. Population structure of human gut bacteria in a diverse cohort from rural Tanzania and Botswana. Genome Biol 20:16. doi:10.1186/s13059-018-1616-9. PubMed DOI PMC
Gomez A, Rothman JM, Petrzelkova K, Yeoman CJ, Vlckova K, Umaña JD, Carr M, Modry D, Todd A, Torralba M, Nelson KE, Stumpf RM, Wilson BA, Blekhman R, White BA, Leigh SR. 2016. Temporal variation selects for diet-microbe co-metabolic traits in the gut of Gorilla spp. ISME J 10:514–526. doi:10.1038/ismej.2015.146. PubMed DOI PMC
Gomez A, Petrzelkova K, Yeoman CJ, Vlckova K, Mrázek J, Koppova I, Carbonero F, Ulanov A, Modry D, Todd A, Torralba M, Nelson KE, Gaskins HR, Wilson B, Stumpf RM, White BA, Leigh SR. 2015. Gut microbiome composition and metabolomic profiles of wild western lowland gorillas (Gorilla gorilla gorilla) reflect host ecology. Mol Ecol 24:2551–2565. doi:10.1111/mec.13181. PubMed DOI
Clayton JB, Vangay P, Huang H, Ward T, Hillmann BM, Al-Ghalith GA, Travis DA, Long HT, Tuan BV, Minh VV, Cabana F, Nadler T, Toddes B, Murphy T, Glander KE, Johnson TJ, Knights D. 2016. Captivity humanizes the primate microbiome. Proc Natl Acad Sci U S A 113:10376–10381. doi:10.1073/pnas.1521835113. PubMed DOI PMC
Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, Lonsdorf EV, Muller MN, Pusey AE, Peeters M, Hahn BH, Ochman H. 2016. Cospeciation of gut microbiota with hominids. Science 353:380–382. doi:10.1126/science.aaf3951. PubMed DOI PMC
Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI. 2008. Evolution of mammals and their gut microbes. Science 320:1647–1651. doi:10.1126/science.1155725. PubMed DOI PMC
NIH HMP Working Group, Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, Bonazzi V, McEwen JE, Wetterstrand KA, Deal C, Baker CC, Di Francesco V, Howcroft TK, Karp RW, Lunsford RD, Wellington CR, Belachew T, Wright M, Giblin C, David H, Mills M, Salomon R, Mullins C, Akolkar B, Begg L, Davis C, Grandison L, Humble M, Khalsa J, Little AR, Peavy H, Pontzer C, Portnoy M, Sayre MH, Starke-Reed P, Zakhari S, Read J, Watson B, Guyer M. 2009. The NIH Human Microbiome Project. Genome Res 19:2317–2323. doi:10.1101/gr.096651.109. PubMed DOI PMC
Proctor LM. 2011. The Human Microbiome Project in 2011 and beyond. Cell Host Microbe 10:287–291. doi:10.1016/j.chom.2011.10.001. PubMed DOI
Raaum RL, Sterner KN, Noviello CM, Stewart C-B, Disotell TR. 2005. Catarrhine primate divergence dates estimated from complete mitochondrial genomes: concordance with fossil and nuclear DNA evidence. J Hum Evol 48:237–257. doi:10.1016/j.jhevol.2004.11.007. PubMed DOI
Garber PA, Righini N, Kowalewski MM. 2015. Evidence of alternative dietary syndromes and nutritional goals in the genus Alouatta, p 85–109. In Kowalewski MM, Garber PA, Cortés-Ortiz L, Urbani B, Youlatos D (ed), Howler monkeys: behavior, ecology, and conservation. Springer New York, New York, NY.
Wrangham RW, Conklin-Brittain NL, Hunt KD. 1998. Dietary response of chimpanzees and cercopithecines to seasonal variation in fruit abundance. I. Antifeedants. Int J Primatol 19:949–970. doi:10.1023/A:1020318102257. DOI
Doran-Sheehy DM, Mongo P, Lodwick J, Conklin-Brittain NL. 2009. Male and female western gorilla diet: preferred foods, use of fallback resources, and implications for ape versus old world monkey foraging strategies. Am J Phys Anthropol 140:727–738. doi:10.1002/ajpa.21118. PubMed DOI
Rothman JM, Raubenheimer D, Chapman CA. 2011. Nutritional geometry: gorillas prioritize non-protein energy while consuming surplus protein. Biol Lett 7:847–849. doi:10.1098/rsbl.2011.0321. PubMed DOI PMC
Whiten A, Byrne RW, Barton RA, Waterman PG, Henzi SP. 1991. Dietary and foraging strategies of baboons. Philos Trans R Soc Lond B Biol Sci 334:187–195. doi:10.1098/rstb.1991.0108. PubMed DOI
Remis MJ, Jost Robinson CA. 2014. Examining short-term nutritional status among BaAka foragers in transitional economies. Am J Phys Anthropol 154:365–375. doi:10.1002/ajpa.22521. PubMed DOI
Milton K. 1999. Nutritional characteristics of wild primate foods: do the diets of our closest living relatives have lessons for us? Nutrition 15:488–498. doi:10.1016/S0899-9007(99)00078-7. PubMed DOI
Panasevich MR, Kerr KR, Dilger RN, Fahey GC Jr, Guérin-Deremaux L, Lynch GL, Wils D, Suchodolski JS, Steer JM, Dowd SE, Swanson KS. 2015. Modulation of the faecal microbiome of healthy adult dogs by inclusion of potato fibre in the diet. Br J Nutr 113:125–133. doi:10.1017/S0007114514003274. PubMed DOI
Umu ÖCO, Frank JA, Fangel JU, Oostindjer M, da Silva CS, Bolhuis EJ, Bosch G, Willats WGT, Pope PB, Diep DB. 2015. Resistant starch diet induces change in the swine microbiome and a predominance of beneficial bacterial populations. Microbiome 3:16. doi:10.1186/s40168-015-0078-5. PubMed DOI PMC
Asp N-G, Björck I. 1992. Resistant starch. Trends Food Sci Technol 3:111–114. doi:10.1016/0924-2244(92)90153-N. DOI
Reese AT, Carmody RN. 2019. Thinking outside the cereal box: non-carbohydrate routes for dietary manipulation of the gut microbiota. Appl Environ Microbiol 85:e02246-18. doi:10.1128/AEM.02246-18. PubMed DOI PMC
Vangay P, Johnson AJ, Ward TL, Al-Ghalith GA, Shields-Cutler RR, Hillmann BM, Lucas SK, Beura LK, Thompson EA, Till LM, Batres R, Paw B, Pergament SL, Saenyakul P, Xiong M, Kim AD, Kim G, Masopust D, Martens EC, Angkurawaranon C, McGready R, Kashyap PC, Culhane-Pera KA, Knights D. 2018. US immigration westernizes the human gut microbiome. Cell 175:962–972. doi:10.1016/j.cell.2018.10.029. PubMed DOI PMC
Martínez I, Stegen JC, Maldonado-Gómez MX, Eren AM, Siba PM, Greenhill AR, Walter J. 2015. The gut microbiota of rural Papua New Guineans: composition, diversity patterns, and ecological processes. Cell Rep 11:527–538. doi:10.1016/j.celrep.2015.03.049. PubMed DOI
O’Keefe SJD, Li JV, Lahti L, Ou J, Carbonero F, Mohammed K, Posma JM, Kinross J, Wahl E, Ruder E, Vipperla K, Naidoo V, Mtshali L, Tims S, Puylaert PGB, DeLany J, Krasinskas A, Benefiel AC, Kaseb HO, Newton K, Nicholson JK, de Vos WM, Gaskins HR, Zoetendal EG. 2015. Fat, fibre and cancer risk in African Americans and rural Africans. Nat Commun 6:6342. doi:10.1038/ncomms7342. PubMed DOI PMC
Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108. doi:10.1126/science.1208344. PubMed DOI PMC
Amato KR, Yeoman CJ, Cerda G, Schmitt CA, Cramer JD, Miller MEB, Gomez A, Turner TR, Wilson BA, Stumpf RM, Nelson KE, White BA, Knight R, Leigh SR. 2015. Variable responses of human and non-human primate gut microbiomes to a Western diet. Microbiome 3:53. doi:10.1186/s40168-015-0120-7. PubMed DOI PMC
Hoover R, Zhou Y. 2003. In vitro and in vivo hydrolysis of legume starches by α-amylase and resistant starch formation in legumes–a review. Carbohydr Polym 54:401–417. doi:10.1016/S0144-8617(03)00180-2. DOI
Montagnac JA, Davis CR, Tanumihardjo SA. 2009. Nutritional value of cassava for use as a staple food and recent advances for improvement. Compr Rev Food Sci Food Saf 8:181–194. doi:10.1111/j.1541-4337.2009.00077.x. PubMed DOI
Deehan EC, Walter J. 2016. The fiber gap and the disappearing gut microbiome: implications for human nutrition. Trends Endocrinol Metab 27:239–242. doi:10.1016/j.tem.2016.03.001. PubMed DOI
Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. 2016. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529:212–215. doi:10.1038/nature16504. PubMed DOI PMC
Cardinale BJ, Palmer MA, Collins SL. 2002. Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 415:426–429. doi:10.1038/415426a. PubMed DOI
Wolff SM, Ellison MJ, Hao Y, Cockrum RR, Austin KJ, Baraboo M, Burch K, Lee HJ, Maurer T, Patil R, Ravelo A, Taxis TM, Truong H, Lamberson WR, Cammack KM, Conant GC. 2017. Diet shifts provoke complex and variable changes in the metabolic networks of the ruminal microbiome. Microbiome 5:60. doi:10.1186/s40168-017-0274-6. PubMed DOI PMC
Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA, O'Keefe JH, Brand-Miller J. 2005. Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr 81:341–354. doi:10.1093/ajcn.81.2.341. PubMed DOI
Eaton SB, Konner MJ, Cordain L. 2010. Diet-dependent acid load, paleolithic nutrition, and evolutionary health promotion. Am J Clin Nutr 91:295–297. doi:10.3945/ajcn.2009.29058. PubMed DOI
Luxwolda MF, Kuipers RS, Kema IP, Dijck-Brouwer DAJ, Muskiet F. 2012. Traditionally living populations in East Africa have a mean serum 25-hydroxyvitamin D concentration of 115 nmol/l. Br J Nutr 108:1557–1561. doi:10.1017/S0007114511007161. PubMed DOI
Konner M, Eaton SB. 2010. Paleolithic nutrition: twenty-five years later. Nutr Clin Pract 25:594–602. doi:10.1177/0884533610385702. PubMed DOI
Ruggles KV, Wang J, Volkova A, Contreras M, Noya-Alarcon O, Lander O, Caballero H, Dominguez-Bello MG. 2018. Changes in the gut microbiota of urban subjects during an immersion in the traditional diet and lifestyle of a rainforest village. mSphere 3:e00193-18. doi:10.1128/mSphere.00193-18. PubMed DOI PMC
Amato KR, Leigh SR, Kent A, Mackie RI, Yeoman CJ, Stumpf RM, Wilson BA, Nelson KE, White BA, Garber PA. 2015. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb Ecol 69:434–443. doi:10.1007/s00248-014-0554-7. PubMed DOI
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi:10.1038/nmeth.f.303. PubMed DOI PMC
R Core Team. 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
McMurdie PJ, Holmes S. 2013. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. doi:10.1371/journal.pone.0061217. PubMed DOI PMC
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H. 2011. vegan: community ecology package. https://CRAN.R-project.org/package=vegan.
Liaw A, Wiener M. 2002. Classification and regression by randomForest. R News 2:18–22.
Roberts DW. 2016. labdsv: ordination and multivariate analysis for ecology. R Package, version 1. https://cran.r-project.org/.
Paradis E, Claude J, Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290. doi:10.1093/bioinformatics/btg412. PubMed DOI
Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi:10.1093/nar/22.22.4673. PubMed DOI PMC
Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. 2017. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 8:28–36. doi:10.1111/2041-210X.12628. DOI
Wickham H, Chang W. 2008. ggplot2: an implementation of the grammar of graphics. R package version 0.7. http://CRAN.R-project.org/package=ggplot2.
The primate gut mycobiome-bacteriome interface is impacted by environmental and subsistence factors
Interspecies variation in hominid gut microbiota controls host gene regulation