Evaluation of a Gastrointestinal Pathogen Panel Immunoassay in Stool Testing of Patients with Suspected Clostridioides (Clostridium) difficile Infection

. 2019 Oct ; 57 (10) : . [epub] 20190924

Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31391230

Clostridioides (Clostridium) difficile infection (CDI) is the most common causative pathogen of health care-associated gastrointestinal infections; however, due to the overlap of clinical symptoms with those of other causes of acute gastroenteritis, the selection of the most appropriate laboratory test is difficult. From April to October 2018, 640 stool samples requested for CDI testing were examined using the mariPOC CDI and Gastro test (ArcDia), which allows the detection of C. difficile glutamate dehydrogenase (GDH) and toxin A/B, norovirus genogroups GI and GII.4, rotavirus, adenovirus, and Campylobacter spp. In parallel, the C. Diff Quik Chek Complete test (Alere) was used as a routine diagnostic assay, and C. difficile toxigenic culture was used as a reference method. The sensitivity of the mariPOC CDI and Gastro test was comparable to that of C. Diff Quik Chek Complete for the detection of GDH (96.40% [95% confidence interval {CI}, 91.81% to 98.82%] versus 95.68% [95% CI, 90.84 to 98.40%]; P = 1.00) and was higher for the detection of toxin A/B (66.67% [95% CI, 57.36 to 75.11%] versus 55.56% [95% CI, 46.08 to 64.74%]; P = 0.00). The specificity of the mariPOC CDI and Gastro test was lower than that of C. Diff Quik Chek Complete for GDH detection (95.21% [95% CI, 92.96% to 96.91%] versus 97.60% [95% CI, 95.85% to 98.76%]; P = 0.04) and comparable to that of C. Diff Quik Chek Complete for toxin A/B detection (99.24 [95% CI, 98.05% to 99.79%] versus 99.81% [95% CI, 98.94% to 100.0%]; P = 0.37). In 29 cases (4.53%), other causative agents of diarrhea were detected (Campylobacter spp. [n = 17], rotavirus [n = 7], and norovirus genogroup GII.4 [n = 5]).

Zobrazit více v PubMed

Oren A, Rupnik M. 2018. Clostridium difficile and Clostridioides difficile: two validly published and correct names. Anaerobe 52:125–126. doi:10.1016/j.anaerobe.2018.07.005. PubMed DOI

European Centre for Disease Prevention and Control. 2013. Point prevalence survey of healthcare-associated infections and antimicrobial use in European acute care hospitals. European Centre for Disease Prevention and Control, Stockholm, Sweden.

Persson S, Torpdahl M, Olsen KE. 2008. New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection. Clin Microbiol Infect 14:1057–1064. doi:10.1111/j.1469-0691.2008.02092.x. PubMed DOI

Braun V, Hundsberger T, Leukel P, Sauerborn M, von Eichel-Streiber C. 1996. Definition of the single integration site of the pathogenicity locus in Clostridium difficile. Gene 181:29–38. doi:10.1016/s0378-1119(96)00398-8. PubMed DOI

Leeflang MMG, Allerberger F. 2019. How to: evaluate a diagnostic test. Clin Microbiol Infect 25:54–59. doi:10.1016/j.cmi.2018.06.011. PubMed DOI

Crobach MJ, Planche T, Eckert C, Barbut F, Terveer EM, Dekkers OM, Wilcox MH, Kuijper EJ. 2016. European Society of Clinical Microbiology and Infectious Diseases: update of the diagnostic guidance document for Clostridium difficile infection. Clin Microbiol Infect 22(Suppl 4):S63–S81. doi:10.1016/j.cmi.2016.03.010. PubMed DOI

Bruins MJ, Verbeek E, Wallinga JA, Bruijnesteijn van Coppenraet LE, Kuijper EJ, Bloembergen P. 2012. Evaluation of three enzyme immunoassays and a loop-mediated isothermal amplification test for the laboratory diagnosis of Clostridium difficile infection. Eur J Clin Microbiol Infect Dis 31:3035–3039. doi:10.1007/s10096-012-1658-y. PubMed DOI

Koskinen JM, Soukka JM, Meltola NJ, Koskinen JO. 2018. Microbial identification from faces [sic] and urine in one step by two-photon excitation assay technique. J Immunol Methods 460:113–118. doi:10.1016/j.jim.2018.06.017. PubMed DOI

Shetty N, Wren MW, Coen PG. 2011. The role of glutamate dehydrogenase for the detection of Clostridium difficile in faecal samples: a meta-analysis. J Hosp Infect 77:1–6. doi:10.1016/j.jhin.2010.07.024. PubMed DOI

Alfa MJ, Swan B, VanDekerkhove B, Pang P, Harding GK. 2002. The diagnosis of Clostridium difficile-associated diarrhea: comparison of Triage C. difficile panel, EIA for Tox A/B and cytotoxin assays. Diagn Microbiol Infect Dis 43:257–263. doi:10.1016/S0732-8893(02)00413-3. PubMed DOI

Krutova M, Wilcox MH, Kuijper EJ. 2018. The pitfalls of laboratory diagnostics of Clostridium difficile infection. Clin Microbiol Infect 24:682–683. doi:10.1016/j.cmi.2018.02.026. PubMed DOI

Mawer DPC, Eyre DW, Griffiths D, Fawley WN, Martin JSH, Quan TP, Peto TEA, Crook DW, Walker AS, Wilcox MH. 2017. Contribution to Clostridium difficile transmission of symptomatic patients with toxigenic strains who are fecal toxin negative. Clin Infect Dis 64:1163–1170. doi:10.1093/cid/cix079. PubMed DOI PMC

Schutze GE, Willoughby RE, Committee on Infectious Diseases, American Academy of Pediatrics. 2013. Clostridium difficile infection in infants and children. Pediatrics 131:196–200. doi:10.1542/peds.2012-2992. PubMed DOI

European Food Safety Authority, European Centre for Disease Prevention and Control. 2017. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J 15:5077. PubMed PMC

Jansen A, Stark K, Kunkel J, Schreier E, Ignatius R, Liesenfeld O, Werber D, Göbel UB, Zeitz M, Schneider T. 2008. Aetiology of community-acquired, acute gastroenteritis in hospitalised adults: a prospective cohort study. BMC Infect Dis 8:143. doi:10.1186/1471-2334-8-143. PubMed DOI PMC

Lausch KR, Westh L, Kristensen LH, Lindberg J, Tarp B, Larsen CS. 2017. Rotavirus is frequent among adults hospitalised for acute gastroenteritis. Dan Med J 64:A5312. PubMed

Liang H, Wen Z, Li Y, Duan Y, Gu Y, Zhang M. 2018. Comparison of the filtration culture and multiple real-time PCR examination for Campylobacter spp. from stool specimens in diarrheal patients. Front Microbiol 9:2995. doi:10.3389/fmicb.2018.02995. PubMed DOI PMC

Lanata C, Fischer-Walker C, Olascoaga A, Torres C, Aryee M, Black R. 2013. Global causes of diarrheal disease mortality in children <5 years of age: a systematic review. PLoS One 8:e72788. doi:10.1371/journal.pone.0072788. PubMed DOI PMC

Bányai K, Estes MK, Martella V, Parashar UD. 2018. Viral gastroenteritis. Lancet 392:175–186. doi:10.1016/S0140-6736(18)31128-0. PubMed DOI PMC

Friesema IH, De Boer RF, Duizer E, Kortbeek LM, Notermans DW, Smeulders A, Bogerman J, Pronk MJ, Uil JJ, Brinkman K, Koopmans MP, Kooistra-Smid AM, Van Duynhoven YT, GEops Working Group. 2012. Aetiology of acute gastroenteritis in adults requiring hospitalization in The Netherlands. Epidemiol Infect 140:1780–1786. doi:10.1017/S0950268811002652. PubMed DOI

Patel MM, Widdowson MA, Glass RI, Akazawa K, Vinje J, Parashar UD. 2008. Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerg Infect Dis 14:1224–1231. doi:10.3201/eid1408.071114. PubMed DOI PMC

Lopman B, Vennema H, Kohli E, Pothier P, Sanchez A, Negredo A, Buesa J, Schreier E, Reacher M, Brown D, Gray J, Iturriza M, Gallimore C, Bottiger B, Hedlund KO, Torvén M, von Bonsdorff CH, Maunula L, Poljsak-Prijatelj M, Zimsek J, Reuter G, Szücs G, Melegh B, Svennson L, van Duijnhoven Y, Koopmans M. 2004. Increase in viral gastroenteritis outbreaks in Europe and epidemic spread of new norovirus variant. Lancet 363:682–688. doi:10.1016/S0140-6736(04)15641-9. PubMed DOI

Glass R, Parashar UD, Estes MK. 2009. Norovirus gastroenteritis. N Engl J Med 361:1776–1785. doi:10.1056/NEJMra0804575. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...