Noninvasive Assessment of Aortic Pulse Wave Velocity by the Brachial Occlusion-Cuff Technique: Comparative Study

. 2019 Aug 08 ; 19 (16) : . [epub] 20190808

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31398931

Grantová podpora
TH04010173 Technologická Agentura České Republiky
SGS17/183/OHK3/3T/13 České Vysoké Učení Technické v Praze
SGS19/166/OHK3/3T/13 České Vysoké Učení Technické v Praze
PROGRES Q38/LF1 Ministerstvo Zdravotnictví Ceské Republiky

Cardiovascular diseases are one of most frequent cause of morbidity and mortality in the world. There is an emerging need for integrated, non-invasive, and easy-to-use clinical tools to assess accurately cardiovascular system primarily in the preventative medicine. We present a novel design for a non-invasive pulse wave velocity (PWV) assessment method integrated in a single brachial blood pressure monitor allowing for up to 100 times more sensitive recording of the pressure pulsations based on a brachial occlusion-cuff (suprasystolic) principle. The monitor prototype with built-in proprietary method was validated with a gold standard reference technique SphygmoCor VX device. The blood pressure and PWV were assessed on twenty-five healthy individuals (9 women, age (37 ± 13) years) in a supine position at rest by a brachial cuff blood pressure monitor prototype, and immediately re-tested using a gold standard method. PWV using our BP monitor was (6.67 ± 0.96) m/s compared to PWV determined by SphygmoCor VX (6.15 ± 1.01) m/s. The correlation between methods using a Pearson's correlation coefficient was r = 0.88 (p < 0.001). The study demonstrates the feasibility of using a single brachial cuff build-in technique for the assessment of the arterial stiffness from a single ambulatory blood pressure assessment.

Zobrazit více v PubMed

Benjamin E.J., Virani S.S., Callaway C.W., Chamberlain A.M., Chang A.R., Cheng S., Chiuve S.E., Cushman M., Delling F.N., Deo R., et al. Heart Disease and Stroke Statistics—2018 Update: A Report from the American heart association. Circulation. 2018;137 doi: 10.1161/CIR.0000000000000558. PubMed DOI

Orourke M.F., Staessen J.A., Vlachopoulos C., Duprez D., Plante G.E.E. Clinical applications of arterial stiffness; definitions and reference values. Am. J. Hypertens. 2002;15:426–444. doi: 10.1016/S0895-7061(01)02319-6. PubMed DOI

Boutouyrie P., Tropeano A.I., Asmar R., Gautier I., Benetos A., Lacolley P. Laurent steéphane aortic stiffness is an independent predictor of primary coronary events in hypertensive patients. Hypertension. 2002;39:10–15. doi: 10.1161/hy0102.099031. PubMed DOI

Mattace-Raso F.U., Cammen T.J.V.D., Hofman A., Popele N.M.V., Bos M.L., Schalekamp M.A., Asmar R., Reneman R.S., Hoeks A.P., Breteler M.M., et al. Arterial stiffness and risk of coronary heart disease and stroke. Circulation. 2006;113:657–663. doi: 10.1161/CIRCULATIONAHA.105.555235. PubMed DOI

Bortel L.M.V., Laurent S., Boutouyrie P., Chowienczyk P., Cruickshank J., Backer T.D., Filipovsky J., Huybrechts S., Mattace-Raso F.U., Protogerou A.D., et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J. Hypertens. 2012;30:445–448. doi: 10.1097/HJH.0b013e32834fa8b0. PubMed DOI

Korteweg D.J. Ueber die Fortpflanzungsgeschwindigkeit des Schalles in elastischen Röhren. Annalen der Physik und Chemie. 1878;241:525–542. doi: 10.1002/andp.18782411206. DOI

Moens A.I. Die Pulscurve. E. J. Brill; Leiden, The Netherlands: 1878.

Laurent S., Cockcroft J., Bortel L.V., Boutouyrie P., Giannattasio C., Hayoz D., Pannier B., Vlachopoulos C., Wilkinson I., Struijker-Boudier H. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur. Heart J. 2006;27:2588–2605. doi: 10.1093/eurheartj/ehl254. PubMed DOI

Pereira T., Correia C., Cardoso J. Novel Methods for Pulse Wave Velocity Measurement. J. Med Biol. Eng. 2015;35:555–565. doi: 10.1007/s40846-015-0086-8. PubMed DOI PMC

Milan A., Zocaro G., Leone D., Tosello F., Buraioli I., Schiavone D., Veglio F. Current assessment of pulse wave velocity. J. Hypertens. 2019;1 doi: 10.1097/HJH.0000000000002081. PubMed DOI

Butlin M., Qasem A. Large Artery Stiffness Assessment Using SphygmoCor Technology. Pulse. 2016;4:180–192. doi: 10.1159/000452448. PubMed DOI PMC

Doupis J., Papanas N., Cohen A., Mcfarlan L., Horton E. Pulse Wave Analysis by Applanation Tonometry for the Measurement of Arterial Stiffness. Open Cardiovasc. Med. J. 2016;10:188–195. doi: 10.2174/1874192401610010188. PubMed DOI PMC

Shirai K., Utino J., Otsuka K., Takata M. A Novel Blood Pressure-independent Arterial Wall Stiffness Parameter; Cardio-Ankle Vascular Index (CAVI) J. Atheroscler. Thromb. 2006;13:101–107. doi: 10.5551/jat.13.101. PubMed DOI

Shirai K., Hiruta N., Song M., Kurosu T., Suzuki J., Tomaru T., Miyashita Y., Saiki A., Takahashi M., Suzuki K., et al. Cardio-Ankle Vascular Index (CAVI) as a Novel Indicator of Arterial Stiffness: Theory, Evidence and Perspectives. J. Atheroscler. Thromb. 2011;18:924–938. doi: 10.5551/jat.7716. PubMed DOI

Wohlfahrt P., Cífková R., Movsisyan N., Kunzová Š., Lešovský J., Homolka M., Soška V., Dobšák P., Lopez-Jimenez F., Sochor O. Reference values of cardio-ankle vascular index in a random sample of a white population. J. Hypertens. 2017;35:2238–2244. doi: 10.1097/HJH.0000000000001437. PubMed DOI

Maliha G., Townsend R.R. A study of the VaSera arterial stiffness device in US patients. J. Clin. Hypertens. 2017;19:661–668. doi: 10.1111/jch.12967. PubMed DOI PMC

Sun C.K. Cardio-ankle vascular index (CAVI) as an indicator of arterial stiffness. Integr. Blood Press. Control. 2013:27. doi: 10.2147/IBPC.S34423. PubMed DOI PMC

Fabian V., Kremen V., Dobias M. Method for an Accurate Automated Non-invasive Measurement of Blood Pressure Waveform and Apparatus to Carry Out the Same. US10251567B2. U.S. Patent. 2017 Jan 9;

Sugawara J., Hayashi K., Tanaka H. Distal shift of arterial pressure wave reflection sites with aging. Hypertension. 2010;56:920–925. doi: 10.1161/HYPERTENSIONAHA.110.160549. PubMed DOI PMC

Diaz A., Zócalo Y., Bia D., Wray S., Fischer E.C. Reference intervals and percentiles for carotid-femoral pulse wave velocity in a healthy population aged between 9 and 87 years. J. Clin. Hypertens. 2018;20:659–671. doi: 10.1111/jch.13251. PubMed DOI PMC

Altman D.G., Bland J.M. Measurement in Medicine: The Analysis of Method Comparison Studies. Statistician. 1983;32:307. doi: 10.2307/2987937. DOI

Lin L.I.K. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics. 1989;45:255. doi: 10.2307/2532051. PubMed DOI

Wilkinson I.B., Mceniery C.M., Schillaci G., Boutouyrie P., Segers P., Donald A., Chowienczyk P.J. ARTERY Society guidelines for validation of non-invasive haemodynamic measurement devices: Part 1, arterial pulse wave velocity. Artery Res. 2010;4:34–40. doi: 10.1016/j.artres.2010.03.001. DOI

AtCor Medical, Inc. (USA) SphygmoCor Vx. Brochure 2005. [(accessed on 5 May 2019)]; Available online: http://www.atcormedical.com.au/pdf/English/USA%20Letter/SphygmoCor%20Vx%20Datasheet%20DCN%20100516%20(English)%20USA.pdf.

Attwell L., Rosen S., Upadhyay B., Gogalniceanu P. The umbilicus: A reliable surface landmark for the aortic bifurcation? Surg. Radiol. Anat. 2015;37:1239–1242. doi: 10.1007/s00276-015-1500-1. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Feasibility of Brachial Occlusion Technique for Beat-to-Beat Pulse Wave Analysis

. 2022 Sep 26 ; 22 (19) : . [epub] 20220926

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...