Noninvasive Assessment of Aortic Pulse Wave Velocity by the Brachial Occlusion-Cuff Technique: Comparative Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TH04010173
Technologická Agentura České Republiky
SGS17/183/OHK3/3T/13
České Vysoké Učení Technické v Praze
SGS19/166/OHK3/3T/13
České Vysoké Učení Technické v Praze
PROGRES Q38/LF1
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
31398931
PubMed Central
PMC6719951
DOI
10.3390/s19163467
PII: s19163467
Knihovny.cz E-zdroje
- Klíčová slova
- arterial stiffness, pulse wave velocity, single-cuff, suprasystolic blood pressure,
- Publikační typ
- časopisecké články MeSH
Cardiovascular diseases are one of most frequent cause of morbidity and mortality in the world. There is an emerging need for integrated, non-invasive, and easy-to-use clinical tools to assess accurately cardiovascular system primarily in the preventative medicine. We present a novel design for a non-invasive pulse wave velocity (PWV) assessment method integrated in a single brachial blood pressure monitor allowing for up to 100 times more sensitive recording of the pressure pulsations based on a brachial occlusion-cuff (suprasystolic) principle. The monitor prototype with built-in proprietary method was validated with a gold standard reference technique SphygmoCor VX device. The blood pressure and PWV were assessed on twenty-five healthy individuals (9 women, age (37 ± 13) years) in a supine position at rest by a brachial cuff blood pressure monitor prototype, and immediately re-tested using a gold standard method. PWV using our BP monitor was (6.67 ± 0.96) m/s compared to PWV determined by SphygmoCor VX (6.15 ± 1.01) m/s. The correlation between methods using a Pearson's correlation coefficient was r = 0.88 (p < 0.001). The study demonstrates the feasibility of using a single brachial cuff build-in technique for the assessment of the arterial stiffness from a single ambulatory blood pressure assessment.
Zobrazit více v PubMed
Benjamin E.J., Virani S.S., Callaway C.W., Chamberlain A.M., Chang A.R., Cheng S., Chiuve S.E., Cushman M., Delling F.N., Deo R., et al. Heart Disease and Stroke Statistics—2018 Update: A Report from the American heart association. Circulation. 2018;137 doi: 10.1161/CIR.0000000000000558. PubMed DOI
Orourke M.F., Staessen J.A., Vlachopoulos C., Duprez D., Plante G.E.E. Clinical applications of arterial stiffness; definitions and reference values. Am. J. Hypertens. 2002;15:426–444. doi: 10.1016/S0895-7061(01)02319-6. PubMed DOI
Boutouyrie P., Tropeano A.I., Asmar R., Gautier I., Benetos A., Lacolley P. Laurent steéphane aortic stiffness is an independent predictor of primary coronary events in hypertensive patients. Hypertension. 2002;39:10–15. doi: 10.1161/hy0102.099031. PubMed DOI
Mattace-Raso F.U., Cammen T.J.V.D., Hofman A., Popele N.M.V., Bos M.L., Schalekamp M.A., Asmar R., Reneman R.S., Hoeks A.P., Breteler M.M., et al. Arterial stiffness and risk of coronary heart disease and stroke. Circulation. 2006;113:657–663. doi: 10.1161/CIRCULATIONAHA.105.555235. PubMed DOI
Bortel L.M.V., Laurent S., Boutouyrie P., Chowienczyk P., Cruickshank J., Backer T.D., Filipovsky J., Huybrechts S., Mattace-Raso F.U., Protogerou A.D., et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J. Hypertens. 2012;30:445–448. doi: 10.1097/HJH.0b013e32834fa8b0. PubMed DOI
Korteweg D.J. Ueber die Fortpflanzungsgeschwindigkeit des Schalles in elastischen Röhren. Annalen der Physik und Chemie. 1878;241:525–542. doi: 10.1002/andp.18782411206. DOI
Moens A.I. Die Pulscurve. E. J. Brill; Leiden, The Netherlands: 1878.
Laurent S., Cockcroft J., Bortel L.V., Boutouyrie P., Giannattasio C., Hayoz D., Pannier B., Vlachopoulos C., Wilkinson I., Struijker-Boudier H. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur. Heart J. 2006;27:2588–2605. doi: 10.1093/eurheartj/ehl254. PubMed DOI
Pereira T., Correia C., Cardoso J. Novel Methods for Pulse Wave Velocity Measurement. J. Med Biol. Eng. 2015;35:555–565. doi: 10.1007/s40846-015-0086-8. PubMed DOI PMC
Milan A., Zocaro G., Leone D., Tosello F., Buraioli I., Schiavone D., Veglio F. Current assessment of pulse wave velocity. J. Hypertens. 2019;1 doi: 10.1097/HJH.0000000000002081. PubMed DOI
Butlin M., Qasem A. Large Artery Stiffness Assessment Using SphygmoCor Technology. Pulse. 2016;4:180–192. doi: 10.1159/000452448. PubMed DOI PMC
Doupis J., Papanas N., Cohen A., Mcfarlan L., Horton E. Pulse Wave Analysis by Applanation Tonometry for the Measurement of Arterial Stiffness. Open Cardiovasc. Med. J. 2016;10:188–195. doi: 10.2174/1874192401610010188. PubMed DOI PMC
Shirai K., Utino J., Otsuka K., Takata M. A Novel Blood Pressure-independent Arterial Wall Stiffness Parameter; Cardio-Ankle Vascular Index (CAVI) J. Atheroscler. Thromb. 2006;13:101–107. doi: 10.5551/jat.13.101. PubMed DOI
Shirai K., Hiruta N., Song M., Kurosu T., Suzuki J., Tomaru T., Miyashita Y., Saiki A., Takahashi M., Suzuki K., et al. Cardio-Ankle Vascular Index (CAVI) as a Novel Indicator of Arterial Stiffness: Theory, Evidence and Perspectives. J. Atheroscler. Thromb. 2011;18:924–938. doi: 10.5551/jat.7716. PubMed DOI
Wohlfahrt P., Cífková R., Movsisyan N., Kunzová Š., Lešovský J., Homolka M., Soška V., Dobšák P., Lopez-Jimenez F., Sochor O. Reference values of cardio-ankle vascular index in a random sample of a white population. J. Hypertens. 2017;35:2238–2244. doi: 10.1097/HJH.0000000000001437. PubMed DOI
Maliha G., Townsend R.R. A study of the VaSera arterial stiffness device in US patients. J. Clin. Hypertens. 2017;19:661–668. doi: 10.1111/jch.12967. PubMed DOI PMC
Sun C.K. Cardio-ankle vascular index (CAVI) as an indicator of arterial stiffness. Integr. Blood Press. Control. 2013:27. doi: 10.2147/IBPC.S34423. PubMed DOI PMC
Fabian V., Kremen V., Dobias M. Method for an Accurate Automated Non-invasive Measurement of Blood Pressure Waveform and Apparatus to Carry Out the Same. US10251567B2. U.S. Patent. 2017 Jan 9;
Sugawara J., Hayashi K., Tanaka H. Distal shift of arterial pressure wave reflection sites with aging. Hypertension. 2010;56:920–925. doi: 10.1161/HYPERTENSIONAHA.110.160549. PubMed DOI PMC
Diaz A., Zócalo Y., Bia D., Wray S., Fischer E.C. Reference intervals and percentiles for carotid-femoral pulse wave velocity in a healthy population aged between 9 and 87 years. J. Clin. Hypertens. 2018;20:659–671. doi: 10.1111/jch.13251. PubMed DOI PMC
Altman D.G., Bland J.M. Measurement in Medicine: The Analysis of Method Comparison Studies. Statistician. 1983;32:307. doi: 10.2307/2987937. DOI
Lin L.I.K. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics. 1989;45:255. doi: 10.2307/2532051. PubMed DOI
Wilkinson I.B., Mceniery C.M., Schillaci G., Boutouyrie P., Segers P., Donald A., Chowienczyk P.J. ARTERY Society guidelines for validation of non-invasive haemodynamic measurement devices: Part 1, arterial pulse wave velocity. Artery Res. 2010;4:34–40. doi: 10.1016/j.artres.2010.03.001. DOI
AtCor Medical, Inc. (USA) SphygmoCor Vx. Brochure 2005. [(accessed on 5 May 2019)]; Available online: http://www.atcormedical.com.au/pdf/English/USA%20Letter/SphygmoCor%20Vx%20Datasheet%20DCN%20100516%20(English)%20USA.pdf.
Attwell L., Rosen S., Upadhyay B., Gogalniceanu P. The umbilicus: A reliable surface landmark for the aortic bifurcation? Surg. Radiol. Anat. 2015;37:1239–1242. doi: 10.1007/s00276-015-1500-1. PubMed DOI
Feasibility of Brachial Occlusion Technique for Beat-to-Beat Pulse Wave Analysis