• This record comes from PubMed

Determination of oxaliplatin enantiomers at attomolar levels by capillary electrophoresis connected with inductively coupled plasma mass spectrometry

. 2019 Dec 01 ; 205 () : 120151. [epub] 20190713

Language English Country Netherlands Media print-electronic

Document type Journal Article

The aim of this study was to develop a method for the separation of oxaliplatin enantiomers at attomolar concentration levels. A combination of capillary electrophoresis and inductively coupled plasma mass spectrometry was chosen due to their unique characteristics, including fast and easy modification of separation selectivity, and significant limits of detection and linearity. In the first step, we optimized conditions for the separation of oxaliplatin enantiomers including background electrolyte composition and concentration, pH, and type and concentration of the chiral selector. Under optimal conditions, sodium borate buffer pH 9.5, ionic strength 40 mmol L-1, with 60 mg mL-1 sulfated β-cyclodextrin, separation was obtained with a resolution of 2.0. This electrolyte system was then used in the 'in-house' connection of capillary electrophoresis with inductively coupled plasma mass spectrometer. In this instance, separation lasted for 9.5 min. Calibrations were linear in the range of 0.1-500 μg mL-1 with R2 of 0.9999. LOD and LOQ values were of 64 ng mL-1 and 116 ng mL-1 of oxaliplatin, respectively. This represents detection of 49 fg or 125 attomol of oxaliplatin enantiomers in the capillary electrophoresis injected sample zone. Finally, the method was successfully applied for detection of oxaliplatin enantiomers in spiked urine samples.

References provided by Crossref.org

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...