Effects of Radiation Therapy on Neural Stem Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
31450566
PubMed Central
PMC6770913
DOI
10.3390/genes10090640
PII: genes10090640
Knihovny.cz E-zdroje
- Klíčová slova
- brain and nervous system cancers, neural stem cells, neurogenic niches, radiotherapy, sparing of neurogenic regions,
- MeSH
- lidé MeSH
- mozek cytologie účinky záření MeSH
- nádory mozku radioterapie MeSH
- nervové kmenové buňky cytologie účinky záření MeSH
- neurogeneze MeSH
- radioterapie škodlivé účinky metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Brain and nervous system cancers in children represent the second most common neoplasia after leukemia. Radiotherapy plays a significant role in cancer treatment; however, the use of such therapy is not without devastating side effects. The impact of radiation-induced damage to the brain is multifactorial, but the damage to neural stem cell populations seems to play a key role. The brain contains pools of regenerative neural stem cells that reside in specialized neurogenic niches and can generate new neurons. In this review, we describe the advances in radiotherapy techniques that protect neural stem cell compartments, and subsequently limit and prevent the occurrence and development of side effects. We also summarize the current knowledge about neural stem cells and the molecular mechanisms underlying changes in neural stem cell niches after brain radiotherapy. Strategies used to minimize radiation-related damages, as well as new challenges in the treatment of brain tumors are also discussed.
Zobrazit více v PubMed
Worldwide Cancer Statistics. [(accessed on 26 April 2019)]; Available online: https://www.cancerresearchuk.org/health-professional/cancer-statistics/worldwide-cancer.
Cancer Today. [(accessed on 26 April 2019)]; Available online: http://gco.iarc.fr/today/home.
Behin A., Hoang-Xuan K., Carpentier A.F., Delattre J.Y. Primary brain tumours in adults. Lancet. 2003;361:323–331. doi: 10.1016/S0140-6736(03)12328-8. PubMed DOI
Ostrom Q.T., Wright C.H., Barnholtz-Sloan J.S. Brain metastases: Epidemiology. Handb. Clin. Neurol. 2018;149:27–42. PubMed
Villano J.L., Durbin E.B., Normandeau C., Thakkar J.P., Moirangthem V., Davis F.G. Incidence of brain metastasis at initial presentation of lung cancer. Neuro-Oncology. 2015;17:122–128. doi: 10.1093/neuonc/nou099. PubMed DOI PMC
Feng W., Zhang P., Zheng X., Chen M., Mao W.M. Incidence and treatment of brain metastasis in patients with esophageal carcinoma. World J. Gastroenterol. 2015;21:5805–5812. doi: 10.3748/wjg.v21.i19.5805. PubMed DOI PMC
Deeken J.F., Löscher W. The Blood-Brain Barrier and Cancer: Transporters, Treatment, and Trojan Horses. Clin. Cancer Res. 2007;13:1663–1674. doi: 10.1158/1078-0432.CCR-06-2854. PubMed DOI
Mahase S.S., Navrazhina K., Schwartz T.H., Parashar B., Wernicke A.G. Intraoperative brachytherapy for resected brain metastases. Brachytherapy. 2019;18:258–270. doi: 10.1016/j.brachy.2019.01.011. PubMed DOI
Delattre J.Y., Krol G., Thaler H.T., Posner J.B. Distribution of Brain Metastases. Arch. Neurol. 1988;45:741–744. doi: 10.1001/archneur.1988.00520310047016. PubMed DOI
Siegel R., DeSantis C., Virgo K., Stein K., Mariotto A., Smith T., Cooper D., Gansler T., Lerro C., Fedewa S., et al. Cancer treatment and survivorship statistics. CA Cancer J. Clin. 2012;62:220–241. doi: 10.3322/caac.21149. PubMed DOI
Delaney G., Jacob S., Featherstone C., Barton M. The role of radiotherapy in cancer treatment—Estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer. 2005;104:1129–1137. doi: 10.1002/cncr.21324. PubMed DOI
Gerstner E.R., Fine R.L. Increased Permeability of the Blood-Brain Barrier to Chemotherapy in Metastatic Brain Tumors: Establishing a Treatment Paradigm. J. Clin. Oncol. 2007;25:2306–2312. doi: 10.1200/JCO.2006.10.0677. PubMed DOI
Van Vulpen M., Kal H.B., Taphoorn M.J.B., El-Sharouni S.Y. Changes in blood-brain barrier permeability induced by radiotherapy: Implications for timing of chemotherapy? Oncol. Rep. 2002;9:683–688. doi: 10.3892/or.9.4.683. PubMed DOI
Miller D.S. Regulation of P-glycoprotein and other ABC drug transporters at the blood-brain barrier. Trends Pharmacol. Sci. 2010;31:246–254. doi: 10.1016/j.tips.2010.03.003. PubMed DOI PMC
Elsinga P., Hendrikse N., Bart J., Vaalburg W., Waarde A. PET Studies on P-Glycoprotein Function in the Blood-Brain Barrier: How it Affects Uptake and Binding of Drugs within the CNS. Curr. Pharm. Des. 2004;10:1493–1503. doi: 10.2174/1381612043384736. PubMed DOI
Kemper E.M., Van Zandbergen A.E., Cleypool C., Mos H.A., Boogerd W., Beijnen J.H., Van Tellingen O. Increased penetration of paclitaxel into the brain by inhibition of P-Glycoprotein. Clin. Cancer Res. 2003;9:2849–2855. PubMed
Drion N., Lemaire M., Lefauconnier J.M., Scherrmann J.M. Role of P-glycoprotein in the blood-brain transport of colchicine and vinblastine. J. Neurochem. 1996;67:1688–1693. doi: 10.1046/j.1471-4159.1996.67041688.x. PubMed DOI
Chung F.S., Santiago J.S., Jesus M.F., Trinidad C.V., See M.F. Disrupting P-glycoprotein function in clinical settings: What can we learn from the fundamental aspects of this transporter? Am. J. Cancer Res. 2016;6:1583–1598. PubMed PMC
Traxl A., Mairinger S., Filip T., Sauberer M., Stanek J., Poschner S., Jager W., Zoufal V., Novarino G., Tournier N., et al. Inhibition of ABCB1 and ABCG2 at the Mouse Blood Brain-Barrier with Marketed Drugs to Improve Brain Delivery of the Model ABCB1/ABCG2 Substrate [C-11] erlotinib. Mol. Pharm. 2019;16:1282–1293. doi: 10.1021/acs.molpharmaceut.8b01217. PubMed DOI
Rubin P., Gash D., Hansen J., Nelson D., Williams J. Disruption of the blood-brain barrier as the primary effect of CNS irradiation. Radiother. Oncol. 1994;31:51–60. doi: 10.1016/0167-8140(94)90413-8. PubMed DOI
Jahnke K., Doolittle N.D., Muldoon L.L., Neuwelt E.A. Implications of the blood–brain barrier in primary central nervous system lymphoma. Neurosurg. Focus. 2006;21:1–11. doi: 10.3171/foc.2006.21.5.12. PubMed DOI
Fauquette W., Amourette C., Dehouck M.P., Diserbo M. Radiation-induced blood–brain barrier damages: An in vitro study. Brain Res. 2012;1433:114–126. doi: 10.1016/j.brainres.2011.11.022. PubMed DOI
Qin D., Ou G., Mo H., Song Y., Kang G., Hu Y., Gu X. Improved efficacy of chemotherapy for glioblastoma by radiation-induced opening of blood-brain barrier: Clinical results. Int. J. Radiat. Oncol. 2001;51:959–962. doi: 10.1016/S0360-3016(01)01735-7. PubMed DOI
Qin D., Ma J., Xiao J., Tang Z. Effect of brain irradiation on blood-CSF barrier permeability of chemotherapeutic agents. Am. J. Clin. Oncol. 1997;20:263–265. doi: 10.1097/00000421-199706000-00011. PubMed DOI
Vitaz T.W., Warnke P.C., Tabar V., Gutin P.H. Brachytherapy for brain tumors. J. Neurooncol. 2005;73:71–86. doi: 10.1007/s11060-004-2352-4. PubMed DOI
Zalutsky M.R. Targeted radiotherapy of brain tumours. Br. J. Cancer. 2004;90:1469–1473. doi: 10.1038/sj.bjc.6601771. PubMed DOI PMC
Mitchell G. The Rationale for Fractionation in Radiotherapy. Clin. J. Oncol. Nurs. 2013;17:412–417. doi: 10.1188/13.CJON.412-417. PubMed DOI
Withers H.R. The Four R’s of Radiotherapy. In: Lett J.T., Adler H., Zelle M., editors. Advances in Radiation Biology. Volume 5. Elsevier; Amsterdam, The Netherlands: 1975. pp. 241–271.
Hermanto U., Frija E.K., Lii M.J., Chang E.L., Mahajan A., Woo S.Y. Intensity-modulated radiotherapy (IMRT) and conventional three-dimensional conformal radiotherapy for high-grade gliomas: Does IMRT increase the integral dose to normal brain? Int. J. Radiat. Oncol. 2007;67:1135–1144. doi: 10.1016/j.ijrobp.2006.10.032. PubMed DOI
Leibel S.A., Sheline G.E. Radiation therapy for neoplasms of the brain. J. Neurosurg. 1987;66:1–22. doi: 10.3171/jns.1987.66.1.0001. PubMed DOI
Oskan F., Ganswindt U., Schwarz S., Manapov F., Belka C., Niyazi M. Hippocampus sparing in whole-brain radiotherapy. Strahlenther. Onkol. 2014;190:337–341. doi: 10.1007/s00066-013-0518-8. PubMed DOI
Stafinski T., Jhangri G.S., Yan E., Menon D. Effectiveness of stereotactic radiosurgery alone or in combination with whole brain radiotherapy compared to conventional surgery and/or whole brain radiotherapy for the treatment of one or more brain metastases: A systematic review and meta-analysis. Cancer Treat. Rev. 2006;32:203–213. doi: 10.1016/j.ctrv.2005.12.009. PubMed DOI
Blomstrand M., Brodin N.P., Rosenschold P.M.A., Vogelius I.R., Merino G.S., Kiil-Berthlesen A., Blomgren K., Lannering B., Bentzen S.M., Björk-Eriksson T. Estimated clinical benefit of protecting neurogenesis in the developing brain during radiation therapy for pediatric medulloblastoma. Neuro-Oncology. 2012;14:882–889. doi: 10.1093/neuonc/nos120. PubMed DOI PMC
Marsh J.C., Ziel G.E., Diaz A.Z., Wendt J.A., Gobole R., Turian J.V. Integral dose delivered to normal brain with conventional intensity-modulated radiotherapy (IMRT) and helical tomotherapy IMRT during partial brain radiotherapy for high-grade gliomas with and without selective sparing of the hippocampus, limbic circuit and neural stem cell compartment. J. Med. Imaging Radiat. Oncol. 2013;57:378–383. PubMed
Muacevic A., Wowra B., Siefert A., Tonn J.C., Steiger H.J., Kreth F.W. Microsurgery plus whole brain irradiation versus Gamma Knife surgery alone for treatment of single metastases to the brain: A randomized controlled multicentre phase III trial. J. Neurooncol. 2008;87:299–307. doi: 10.1007/s11060-007-9510-4. PubMed DOI
Krolicki L., Bruchertseifer F., Kunikowska J., Koziara H., Krolicki B., Jakucinski M., Pawlak D., Apostolidis C., Mirzadeh S., Rola R., et al. Safety and efficacy of targeted alpha therapy with Bi-213-DOTA-substance P in recurrent glioblastoma. Eur. J. Nucl. Med. Mol. Imaging. 2019;46:614–622. doi: 10.1007/s00259-018-4225-7. PubMed DOI
Sheline G.E., Wara W.M., Smith V. Therapeutic irradiation and brain injury. Int. J. Radiat. Oncol. 1980;6:1215–1228. doi: 10.1016/0360-3016(80)90175-3. PubMed DOI
Perry A., Schmidt R.E. Cancer therapy-associated CNS neuropathology: An update and review of the literature. Acta Neuropathol. 2006;111:197–212. doi: 10.1007/s00401-005-0023-y. PubMed DOI
Patel R.R., Mehta M. Targeted Therapy for Brain Metastases: Improving the Therapeutic Ratio. Clin. Cancer Res. 2007;13:1675–1683. doi: 10.1158/1078-0432.CCR-06-2489. PubMed DOI
Soussain C., Ricard D., Fike J.R., Mazeron J.J., Psimaras D., Delattre J.Y. CNS complications of radiotherapy and chemotherapy. Lancet. 2009;374:1639–1651. doi: 10.1016/S0140-6736(09)61299-X. PubMed DOI
Freund D., Zhang R., Sanders M., Newhauser W. Predictive Risk of Radiation Induced Cerebral Necrosis in Pediatric Brain Cancer Patients after VMAT versus Proton Therapy. Cancers. 2015;7:617–630. doi: 10.3390/cancers7020617. PubMed DOI PMC
Dietrich J., Monje M., Wefel J., Meyers C. Clinical Patterns and Biological Correlates of Cognitive Dysfunction Associated with Cancer Therapy. Oncologist. 2008;13:1285–1295. doi: 10.1634/theoncologist.2008-0130. PubMed DOI
Padovani L., Andre N., Constine L.S., Muracciole X. Neurocognitive function after radiotherapy for paediatric brain tumours. Nat. Rev. Neurol. 2012;8:578–588. doi: 10.1038/nrneurol.2012.182. PubMed DOI
Pereira Dias G., Hollywood R., Bevilaqua M.C., da Luz A.C., Hindges R., Nardi A.E., Thuret S. Consequences of cancer treatments on adult hippocampal neurogenesis: Implications for cognitive function and depressive symptoms. Neuro-Oncology. 2014;16:476–492. doi: 10.1093/neuonc/not321. PubMed DOI PMC
Altman J. Autoradiographic study of degenerative and regenerative proliferation of neuroglia cells with tritiated thymidine. Exp. Neurol. 1962;5:302–318. doi: 10.1016/0014-4886(62)90040-7. PubMed DOI
Doetsch F., García-Verdugo J.M., Alvarez-Buylla A. Cellular Composition and Three-Dimensional Organization of the Subventricular Germinal Zone in the Adult Mammalian Brain. J. Neurosci. 1997;17:5046–5061. doi: 10.1523/JNEUROSCI.17-13-05046.1997. PubMed DOI PMC
Kuhn H., Dickinson-Anson H., Gage F. Neurogenesis in the dentate gyrus of the adult rat: Age-related decrease of neuronal progenitor proliferation. J. Neurosci. 1996;16:2027–2033. doi: 10.1523/JNEUROSCI.16-06-02027.1996. PubMed DOI PMC
Zhao C., Deng W., Gage F.H. Mechanisms and Functional Implications of Adult Neurogenesis. Cell. 2008;132:645–660. doi: 10.1016/j.cell.2008.01.033. PubMed DOI
Bonaguidi M.A., Stadel R.P., Berg D.A., Sun J., Ming G.L., Song H. Diversity of Neural Precursors in the Adult Mammalian Brain. Cold Spring Harb. Perspect. Biol. 2016;8:a018838. doi: 10.1101/cshperspect.a018838. PubMed DOI PMC
Li L., Clevers H. Coexistence of Quiescent and Active Adult Stem Cells in Mammals. Science. 2010;327:542–545. doi: 10.1126/science.1180794. PubMed DOI PMC
Eriksson P.S., Perfilieva E., Björk-Eriksson T., Alborn A.M., Nordborg C., Peterson D.A., Gage F.H. Neurogenesis in the adult human hippocampus. Nat. Med. 1998;4:1313–1317. doi: 10.1038/3305. PubMed DOI
Spalding K.L., Bergmann O., Alkass K., Bernard S., Salehpour M., Huttner H.B., Boström E., Westerlund I., Vial C., Buchholz B.A., et al. Dynamics of hippocampal neurogenesis in adult humans. Cell. 2013;153:1219–1227. doi: 10.1016/j.cell.2013.05.002. PubMed DOI PMC
Sorrells S.F., Paredes M.F., Cebrian-Silla A., Sandoval K., Qi D., Kelley K.W., James D., Mayer S., Chang J., Auguste K.I., et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature. 2018;555:377–381. doi: 10.1038/nature25975. PubMed DOI PMC
Boldrini M., Fulmore C.A., Tartt A.N., Simeon L.R., Pavlova I., Poposka V., Rosoklija G.B., Stankov A., Arango V., Dwork A.J., et al. Human Hippocampal Neurogenesis Persists throughout Aging. Cell Stem Cell. 2018;22:589–599. doi: 10.1016/j.stem.2018.03.015. PubMed DOI PMC
Lindsey B.W., Tropepe V. A comparative framework for understanding the biological principles of adult neurogenesis. Prog. Neurobiol. 2006;80:281–307. doi: 10.1016/j.pneurobio.2006.11.007. PubMed DOI
Quinones-Hinojosa A., Sanai N., Soriano-Navarro M., Gonzalez-Perez O., Mirzadeh Z., Gil-Perotin S., Romero-Rodriguez R., Berger M.S., Garcia-Verdugo J.M., Alvarez-Buylla A. Cellular composition and cytoarchitecture of the adult human subventricular zone: A niche of neural stem cells. J. Comp. Neurol. 2006;494:415–434. doi: 10.1002/cne.20798. PubMed DOI
Ernst A., Alkass K., Bernard S., Salehpour M., Perl S., Tisdale J., Possnert G., Druid H., Frisén J. Neurogenesis in the Striatum of the Adult Human Brain. Cell. 2014;156:1072–1083. doi: 10.1016/j.cell.2014.01.044. PubMed DOI
Ming G.L., Song H. Adult Neurogenesis in the Mammalian Brain: Significant Answers and Significant Questions. Neuron. 2011;70:687–702. doi: 10.1016/j.neuron.2011.05.001. PubMed DOI PMC
Fuentealba L.C., Rompani S.B., Parraguez J.I., Obernier K., Romero R., Cepko C.L., Alvarez-Buylla A. Embryonic origin of postnatal neural stem cells. Cell. 2015;161:1644–1655. doi: 10.1016/j.cell.2015.05.041. PubMed DOI PMC
Llorens-Bobadilla E., Zhao S., Baser A., Saiz-Castro G., Zwadlo K., Martin-Villalba A. Single-Cell Transcriptomics Reveals a Population of Dormant Neural Stem Cells that Become Activated upon Brain Injury. Cell Stem Cell. 2015;17:329–340. doi: 10.1016/j.stem.2015.07.002. PubMed DOI
Codega P., Silva-Vargas V., Paul A., Maldonado-Soto A.R., DeLeo A.M., Pastrana E., Doetsch F. Prospective Identification and Purification of Quiescent Adult Neural Stem Cells from Their In Vivo Niche. Neuron. 2014;82:545–559. doi: 10.1016/j.neuron.2014.02.039. PubMed DOI PMC
Obernier K., Alvarez-Buylla A. Neural stem cells: Origin, heterogeneity and regulation in the adult mammalian brain. Development. 2019;146:156059. doi: 10.1242/dev.156059. PubMed DOI PMC
Chaker Z., Codega P., Doetsch F. A mosaic world: Puzzles revealed by adult neural stem cell heterogeneity. Wiley Interdiscip. Rev. Dev. Biol. 2016;5:640–658. doi: 10.1002/wdev.248. PubMed DOI PMC
Dulken B.W., Leeman D.S., Boutet S.C., Hebestreit K., Brunet A. Single cell transcriptomic analysis defines heterogeneity and transcriptional dynamics in the adult neural stem cell lineage. Cell Rep. 2017;18:777–790. doi: 10.1016/j.celrep.2016.12.060. PubMed DOI PMC
Artegiani B., Lyubimova A., Muraro M., Van Es J.H., Van Oudenaarden A., Clevers H. A Single-Cell RNA Sequencing Study Reveals Cellular and Molecular Dynamics of the Hippocampal Neurogenic Niche. Cell Rep. 2017;21:3271–3284. doi: 10.1016/j.celrep.2017.11.050. PubMed DOI
Lim D.A., Alvarez-Buylla A. The Adult Ventricular–Subventricular Zone (V-SVZ) and Olfactory Bulb (OB) Neurogenesis. Cold Spring Harb. Perspect. Biol. 2016;8:a018820. doi: 10.1101/cshperspect.a018820. PubMed DOI PMC
Alfonso J., Le Magueresse C., Zuccotti A., Khodosevich K., Monyer H. Diazepam Binding Inhibitor Promotes Progenitor Proliferation in the Postnatal SVZ by Reducing GABA Signaling. Cell Stem Cell. 2012;10:76–87. doi: 10.1016/j.stem.2011.11.011. PubMed DOI
Liu X.X., Wang Q., Haydar T.F., Bordey A. Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nat. Neurosci. 2005;8:1179–1187. doi: 10.1038/nn1522. PubMed DOI PMC
Paul A., Chaker Z., Doetsch F. Hypothalamic regulation of regionally distinct adult neural stem cells and neurogenesis. Science. 2017;356:1383–1386. doi: 10.1126/science.aal3839. PubMed DOI
Yu H. Typical Cell Signaling Response to Ionizing Radiation: DNA Damage and Extranuclear Damage. Chin. J. Cancer Res. 2012;24:83–89. doi: 10.1007/s11670-012-0083-1. PubMed DOI PMC
Ward J.F. DNA Damage as the Cause of Ionizing Radiation-Induced Gene Activation. Radiat. Res. 1994;138:S85–S88. doi: 10.2307/3578769. PubMed DOI
Sancar A., Lindsey-Boltz L.A., Ünsal-Kaçmaz K., Linn S. Molecular Mechanisms of Mammalian DNA Repair and the DNA Damage Checkpoints. Annu. Rev. Biochem. 2004;73:39–85. doi: 10.1146/annurev.biochem.73.011303.073723. PubMed DOI
Bellinzona M., Gobbel G.T., Shinohara C., Fike J.R. Apoptosis is induced in the subependyma of young adult rats by ionizing irradiation. Neurosci. Lett. 1996;208:163–166. doi: 10.1016/0304-3940(96)12572-6. PubMed DOI
Peißner W., Kocher M., Treuer H., Gillardon F. Ionizing radiation-induced apoptosis of proliferating stem cells in the dentate gyrus of the adult rat hippocampus. Mol. Brain Res. 1999;71:61–68. doi: 10.1016/S0169-328X(99)00170-9. PubMed DOI
Tada E., Parent J., Lowenstein D., Fike J. X-irradiation causes a prolonged reduction in cell proliferation in the dentate gyrus of adult rats. Neuroscience. 2000;99:33–41. doi: 10.1016/S0306-4522(00)00151-2. PubMed DOI
Mizumatsu S., Monje M.L., Morhardt D.R., Rola R., Palmer T.D., Fike J.R. Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Res. 2003;63:4021–4027. PubMed
Achanta P., Capilla-Gonzalez V., Purger D., Reyes J., Sailor K., Song H., Garcia-Verdugo J.M., Gonzalez-Perez O., Ford E., Quinones-Hinojosa A. Subventricular zone localized irradiation affects the generation of proliferating neural precursor cells and the migration of neuroblasts. Stem Cells. 2012;30:2548–2560. doi: 10.1002/stem.1214. PubMed DOI PMC
Daynac M., Chicheportiche A., Pineda J.R., Gauthier L.R., Boussin F.D., Mouthon M.A. Quiescent neural stem cells exit dormancy upon alteration of GABA(A)R signaling following radiation damage. Stem Cell Res. 2013;11:516–528. doi: 10.1016/j.scr.2013.02.008. PubMed DOI
Ben Abdallah N.M.B., Slomianka L., Lipp H.P. Reversible effect of X-irradiation on proliferation, neurogenesis, and cell death in the dentate gyrus of adult mice. Hippocampus. 2007;17:1230–1240. doi: 10.1002/hipo.20358. PubMed DOI
Morizur L., Chicheportiche A., Gauthier L.R., Daynac M., Boussin F.D., Mouthon M.A. Distinct Molecular Signatures of Quiescent and Activated Adult Neural Stem Cells Reveal Specific Interactions with Their Microenvironment. Stem Cell Rep. 2018;11:565–577. doi: 10.1016/j.stemcr.2018.06.005. PubMed DOI PMC
Barazzuol L., Ju L., Jeggo P.A. A coordinated DNA damage response promotes adult quiescent neural stem cell activation. PLoS Biol. 2017;15:e2001264. doi: 10.1371/journal.pbio.2001264. PubMed DOI PMC
Maslov A.Y., Barone T.A., Plunkett R.J., Pruitt S.C. Neural Stem Cell Detection, Characterization, and Age-Related Changes in the Subventricular Zone of Mice. J. Neurosci. 2004;24:1726–1733. doi: 10.1523/JNEUROSCI.4608-03.2004. PubMed DOI PMC
Lazarini F., Mouthon M.A., Gheusi G., De Chaumont F., Olivo-Marin J.C., Lamarque S., Abrous D.N., Boussin F.D., Lledo P.M. Cellular and Behavioral Effects of Cranial Irradiation of the Subventricular Zone in Adult Mice. PLoS ONE. 2009;4:e7017. doi: 10.1371/journal.pone.0007017. PubMed DOI PMC
Monje M.L., Mizumatsu S., Fike J.R., Palmer T.D. Irradiation induces neural precursor-cell dysfunction. Nat. Med. 2002;8:955–962. doi: 10.1038/nm749. PubMed DOI
Pineda J.R., Daynac M., Chicheportiche A., Cebrian-Silla A., Felice K.S., Garcia-Verdugo J.M., Boussin F.D., Mouthon M.A. Vascular-derived TGF-β increases in the stem cell niche and perturbs neurogenesis during aging and following irradiation in the adult mouse brain. EMBO Mol. Med. 2013;5:548–562. doi: 10.1002/emmm.201202197. PubMed DOI PMC
Schneider L., Pellegatta S., Favaro R., Pisati F., Roncaglia P., Testa G., Nicolis S.K., Finocchiaro G., Di Fagagna F.D. DNA Damage in Mammalian Neural Stem Cells Leads to Astrocytic Differentiation Mediated by BMP2 Signaling through JAK-STAT. Stem Cell Rep. 2013;1:123–138. doi: 10.1016/j.stemcr.2013.06.004. PubMed DOI PMC
Konirova J., Cupal L., Jarosova S., Michaelidesova A., Vachelova J., Davidkova M., Bartunek P., Zikova M. Differentiation Induction as a Response to Irradiation in Neural Stem Cells In Vitro. Cancers. 2019;11:913. doi: 10.3390/cancers11070913. PubMed DOI PMC
Hellström N.A., Blomgren K., Kuhn H.G., Björk-Eriksson T., Björk-Eriksson T. Differential Recovery of Neural Stem Cells in the Subventricular Zone and Dentate Gyrus After Ionizing Radiation. Stem Cells. 2009;27:634–641. doi: 10.1634/stemcells.2008-0732. PubMed DOI
Boström M., Kalm M., Karlsson N., Erkenstam N.H., Blomgren K. Irradiation to the young mouse brain caused long-term, progressive depletion of neurogenesis but did not disrupt the neurovascular niche. Br. J. Pharmacol. 2013;33:935–943. doi: 10.1038/jcbfm.2013.34. PubMed DOI PMC
Palmer T.D., Willhoite A.R., Gage F.H. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 2000;425:479–494. doi: 10.1002/1096-9861(20001002)425:4<479::AID-CNE2>3.0.CO;2-3. PubMed DOI
Boström M., Erkenstam N.H., Kaluza D., Jakobsson L., Kalm M., Blomgren K. The hippocampal neurovascular niche during normal development and after irradiation to the juvenile mouse brain. Int. J. Radiat. Biol. 2014;90:778–789. doi: 10.3109/09553002.2014.931612. PubMed DOI
Rola R., Raber J., Rizk A., Otsuka S., Vandenberg S.R., Morhardt D.R., Fike J.R., Rizk-Jackson A. Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Exp. Neurol. 2004;188:316–330. doi: 10.1016/j.expneurol.2004.05.005. PubMed DOI
Chiang C.S., McBride W., Withers H. Radiation-induced astrocytic and microglial responses in mouse brain. Radiother. Oncol. 1993;29:60–68. doi: 10.1016/0167-8140(93)90174-7. PubMed DOI
Lee W.H., Sonntag W.E., Mitschelen M., Yan H., Lee Y.W. Irradiation induces regionally specific alterations in pro-inflammatory environments in rat brain. Int. J. Radiat. Biol. 2010;86:132–144. doi: 10.3109/09553000903419346. PubMed DOI PMC
Gilbo P., Zhang I., Knisely J. Stereotactic radiosurgery of the brain: A review of common indications. Chin. Clin. Oncol. 2017;6(Suppl. S2):14. doi: 10.21037/cco.2017.06.07. PubMed DOI
Ladra M.M., Macdonald S.M., Terezakis S.A. Proton therapy for central nervous system tumors in children. Pediatr. Blood Cancer. 2018;65:e27046. doi: 10.1002/pbc.27046. PubMed DOI
Huo K., Sun Y., Li H., Du X., Wang X., Karlsson N., Zhu C., Blomgren K. Lithium reduced neural progenitor apoptosis in the hippocampus and ameliorated functional deficits after irradiation to the immature mouse brain. Mol. Cell. Neurosci. 2012;51:32–42. doi: 10.1016/j.mcn.2012.07.002. PubMed DOI
Malaterre J., McPherson C.S., Denoyer D., Lai E., Hagekyriakou J., Lightowler S., Shudo K., Ernst M., Ashley D.M., Short J.L., et al. Enhanced Lithium-Induced Brain Recovery Following Cranial Irradiation Is Not Impeded by Inflammation. Stem Cell Transl. Med. 2012;1:469–479. doi: 10.5966/sctm.2011-0046. PubMed DOI PMC
Zanni G., Di Martino E., Omelyanenko A., Andäng M., Delle U., Elmroth K., Blomgren K. Lithium increases proliferation of hippocampal neural stem/progenitor cells and rescues irradiation-induced cell cycle arrest in vitro. Oncotarget. 2015;6:37083–37097. doi: 10.18632/oncotarget.5191. PubMed DOI PMC
Wexler E.M., Geschwind D.H., Palmer T.D. Lithium regulates adult hippocampal progenitor development through canonical Wnt pathway activation. Mol. Psychiatry. 2008;13:285–292. doi: 10.1038/sj.mp.4002093. PubMed DOI
Li J., Feng L., Xing Y., Wang Y., Du L., Xu C., Cao J., Wang Q., Fan S., Liu Q., et al. Radioprotective and Antioxidant Effect of Resveratrol in Hippocampus by Activating Sirt. Int. J. Mol. Sci. 2014;15:5928–5939. doi: 10.3390/ijms15045928. PubMed DOI PMC
Prager I., Patties I., Himmelbach K., Kendzia E., Merz F., Müller K., Kortmann R.D., Glasow A. Dose-dependent short-and long-term effects of ionizing irradiation on neural stem cells in murine hippocampal tissue cultures: Neuroprotective potential of resveratrol. Brain Behav. 2016;6:e00548. doi: 10.1002/brb3.548. PubMed DOI PMC
Fukui M., Choi H.J., Zhu B.T. Mechanism for the Protective Effect of Resveratrol against Oxidative Stress-Induced Neuronal Death. Free Radic. Biol. Med. 2010;49:800–813. doi: 10.1016/j.freeradbiomed.2010.06.002. PubMed DOI PMC
Şener G., Jahovic N., Tosun O., Atasoy B.M., Yeğen B.C. Melatonin ameliorates ionizing radiation-induced oxidative organ damage in rats. Life Sci. 2003;74:563–572. doi: 10.1016/j.lfs.2003.05.011. PubMed DOI
Reiter R.J., Tan D.X., Manchester L.C., Qi W. Biochemical Reactivity of Melatonin with Reactive Oxygen and Nitrogen Species: A Review of the Evidence. Cell Biophys. 2001;34:237–256. doi: 10.1385/CBB:34:2:237. PubMed DOI
Song J., Kang S.M., Lee K.M., Lee J.E. The Protective Effect of Melatonin on Neural Stem Cell against LPS-Induced Inflammation. BioMed Res. Int. 2015;2015:854359. doi: 10.1155/2015/854359. PubMed DOI PMC
Naseri S., Moghahi S.M.H.N., Mokhtari T., Roghani M., Shirazi A.R., Malek F., Rastegar T. Radio-Protective Effects of Melatonin on Subventricular Zone in Irradiated Rat: Decrease in Apoptosis and Upregulation of Nestin. J. Mol. Neurosci. 2017;63:198–205. doi: 10.1007/s12031-017-0970-5. PubMed DOI
Monje M.L., Toda H., Palmer T.D. Inflammatory Blockade Restores Adult Hippocampal Neurogenesis. Science. 2003;302:1760–1765. doi: 10.1126/science.1088417. PubMed DOI
Jenrow K.A., Brown S.L., Lapanowski K., Naei H., Kolozsvary A., Kim J.H. Selective Inhibition of Microglia-Mediated Neuroinflammation Mitigates Radiation-Induced Cognitive Impairment. Radiat. Res. 2013;179:549–556. doi: 10.1667/RR3026.1. PubMed DOI PMC
Willson T.M., Brown P.J., Sternbach D.D., Henke B.R. The PPARs: From Orphan Receptors to Drug Discovery. J. Med. Chem. 2000;43:527–550. doi: 10.1021/jm990554g. PubMed DOI
Bordet R., Ouk T., Petrault O., Gélé P., Gautier S., Laprais M., Deplanque D., Duriez P., Staels B., Fruchart J., et al. PPAR: A new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochem. Soc. Trans. 2006;34:1341–1346. doi: 10.1042/BST0341341. PubMed DOI
Ramanan S., Kooshki M., Zhao W., Hsu F.C., Riddle D.R., Robbins M.E. The PPARalpha agonist fenofibrate preserves hippocampal neurogenesis and inhibits microglial activation after whole-brain irradiation. Int. J. Radiat. Oncol. Biol. Phys. 2009;75:870–877. doi: 10.1016/j.ijrobp.2009.06.059. PubMed DOI PMC
Greene-Schloesser D., Payne V., Peiffer A.M., Hsu F.C., Riddle D.R., Zhao W., Chan M.D., Metheny-Barlow L., Robbins M.E. The peroxisomal proliferator-activated receptor (PPAR) alpha agonist, fenofibrate, prevents fractionated whole-brain irradiation-induced cognitive impairment. Radiat. Res. 2014;181:33–44. doi: 10.1667/RR13202.1. PubMed DOI PMC
Zhao W., Payne V., Tommasi E., Diz D.I., Hsu F.C., Robbins M.E. Administration of the peroxisomal proliferator-activated receptor gamma agonist pioglitazone during fractionated brain irradiation prevents radiation-induced cognitive impairment. Int. J. Radiat. Oncol. Biol. Phys. 2007;67:6–9. doi: 10.1016/j.ijrobp.2006.09.036. PubMed DOI
Jenrow K.A., Liu J., Brown S.L., Kolozsvary A., Lapanowski K., Kim J.H. Combined atorvastatin and ramipril mitigate radiation-induced impairment of dentate gyrus neurogenesis. J. Neurooncol. 2011;101:449–456. doi: 10.1007/s11060-010-0282-x. PubMed DOI
Wang Y., Zhou K., Li T., Xu Y., Xie C., Sun Y., Zhang Y., Rodriguez J., Blomgren K., Zhu C. Inhibition of autophagy prevents irradiation-induced neural stem and progenitor cell death in the juvenile mouse brain. Cell Death Dis. 2017;8:e2694. doi: 10.1038/cddis.2017.120. PubMed DOI PMC
Acharya M.M., Christie L.A., Lan M.L., Giedzinski E., Fike J.R., Rosi S., Limoli C.L. Human Neural Stem Cell Transplantation Ameliorates Radiation-Induced Cognitive Dysfunction. Cancer Res. 2011;71:4834–4845. doi: 10.1158/0008-5472.CAN-11-0027. PubMed DOI PMC
Acharya M.M., Rosi S., Jopson T., Limoli C.L. Human Neural Stem Cell Transplantation Provides Long-Term Restoration of Neuronal Plasticity in the Irradiated Hippocampus. Cell Transplant. 2015;24:691–702. doi: 10.3727/096368914X684600. PubMed DOI PMC
Ramos-Zuñiga R., Gonzalez-Perez O., Macías-Ornelas A., Capilla-Gonzalez V., Quiñones-Hinojosa A. Ethical Implications in the Use of Embryonic and Adult Neural Stem Cells. Stem Cells Int. 2012;2012:470949. doi: 10.1155/2012/470949. PubMed DOI PMC
Baulch J.E., Acharya M.M., Allen B.D., Ru N., Chmielewski N.N., Martirosian V., Giedzinski E., Syage A., Park A.L., Benke S.N., et al. Cranial grafting of stem cell-derived microvesicles improves cognition and reduces neuropathology in the irradiated brain. Proc. Natl. Acad. Sci. USA. 2016;113:4836–4841. doi: 10.1073/pnas.1521668113. PubMed DOI PMC
Joo K.M., Jin J., Kang B.G., Lee S.J., Kim K.H., Yang H., Lee Y.A., Cho Y.J., Im Y.S., Lee D.S., et al. Trans-Differentiation of Neural Stem Cells: A Therapeutic Mechanism Against the Radiation Induced Brain Damage. PLoS ONE. 2012;7:e25936. doi: 10.1371/journal.pone.0025936. PubMed DOI PMC
Sano K., Morii K., Sato M., Mori H., Tanaka R. Radiation-induced Diffuse Brain Injury in the Neonatal Rat Model. Radiation-induced Apoptosis of Oligodendrocytes. Neurol. Med. Chir. 2000;40:495–500. doi: 10.2176/nmc.40.495. PubMed DOI
Piao J., Major T., Auyeung G., Policarpio E., Menon J., Droms L., Gutin P., Uryu K., Tchieu J., Soulet D., et al. Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitors Remyelinate the Brain and Rescue Behavioral Deficits following Radiation. Cell Stem Cell. 2015;16:198–210. doi: 10.1016/j.stem.2015.01.004. PubMed DOI PMC
Soria B., Martin-Montalvo A., Aguilera Y., Mellado-Damas N., López-Beas J., Herrera-Herrera I., López E., Barcia J.A., Alvarez-Dolado M., Hmadcha A., et al. Human Mesenchymal Stem Cells Prevent Neurological Complications of Radiotherapy. Front. Cell. Neurosci. 2019;13:204. doi: 10.3389/fncel.2019.00204. PubMed DOI PMC
Simone B.A., Champ C.E., Rosenberg A.L., Berger A.C., Monti D.A., Dicker A.P., Simone N.L. Selectively starving cancer cells through dietary manipulation: Methods and clinical implications. Future Oncol. 2013;9:959–976. doi: 10.2217/fon.13.31. PubMed DOI
Alifieris C., Trafalis D.T. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol. Ther. 2015;152:63–82. doi: 10.1016/j.pharmthera.2015.05.005. PubMed DOI
Weinhouse S., Warburg O., Burk D., Schade A.L. On Respiratory Impairment in Cancer Cells. Science. 1956;124:267–272. doi: 10.1126/science.124.3215.267. PubMed DOI
Marsh J., Mukherjee P., Seyfried T. Akt-Dependent Proapoptotic Effects of Dietary Restriction on Late-Stage Management of a Phosphatase and Tensin Homologue/Tuberous Sclerosis Complex 2-Deficient Mouse Astrocytoma. Clin. Cancer Res. 2008;14:7751–7762. doi: 10.1158/1078-0432.CCR-08-0213. PubMed DOI
Zuccoli G., Marcello N., Pisanello A., Servadei F., Vaccaro S., Mukherjee P., Seyfried T.N. Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: Case Report. Nutr. Metab. 2010;7:33. doi: 10.1186/1743-7075-7-33. PubMed DOI PMC
Schwartz K., Chang H.T., Nikolai M., Pernicone J., Rhee S., Olson K., Kurniali P.C., Hord N.G., Noel M. Treatment of glioma patients with ketogenic diets: Report of two cases treated with an IRB-approved energy-restricted ketogenic diet protocol and review of the literature. Cancer Metab. 2015;3:3. doi: 10.1186/s40170-015-0129-1. PubMed DOI PMC
Elsakka A.M.A., Bary M.A., Abdelzaher E., Elnaggar M., Kalamian M., Mukherjee P., Seyfried T.N. Management of Glioblastoma Multiforme in a Patient Treated with Ketogenic Metabolic Therapy and Modified Standard of Care: A 24-Month Follow-Up. Front. Nutr. 2018;5:20. doi: 10.3389/fnut.2018.00020. PubMed DOI PMC
Seyfried T.N., Flores R., Poff A.M., D’Agostino D.P., Mukherjee P. Metabolic therapy: A new paradigm for managing malignant brain cancer. Cancer Lett. 2015;356:289–300. doi: 10.1016/j.canlet.2014.07.015. PubMed DOI
Nishie A., Ono M., Shono T., Fukushi J., Otsubo M., Onoue H., Ito Y., Inamura T., Ikezaki K., Fukui M., et al. Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clin. Cancer Res. 1999;5:1107–1113. PubMed
Lewis C., Murdoch C. Macrophage responses to hypoxia: Implications for tumor progression and anti-cancer therapies. Am. J. Pathol. 2005;167:627–635. doi: 10.1016/S0002-9440(10)62038-X. PubMed DOI PMC
Dong W., Selgrade M.K., Gilmour M.I., Lange R.W., Park P., Luster M.I., Kari F.W. Altered Alveolar Macrophage Function in Calorie-restricted Rats. Am. J. Respir. Cell Mol. Biol. 1998;19:462–469. doi: 10.1165/ajrcmb.19.3.3114. PubMed DOI
Apple D.M., Mahesula S., Fonseca R.S., Zhu C., Kokovay E. Calorie restriction protects neural stem cells from age-related deficits in the subventricular zone. Aging. 2019;11:115–126. doi: 10.18632/aging.101731. PubMed DOI PMC
Tobin M.K., Musaraca K., Disouky A., Shetti A., Bheri A., Honer W.G., Kim N., Dawe R.J., Bennett D.A., Arfanakis K., et al. Human Hippocampal Neurogenesis Persists in Aged Adults and Alzheimer’s Disease Patients. Cell Stem Cell. 2019;24:974–982. doi: 10.1016/j.stem.2019.05.003. PubMed DOI PMC
Moreno-Jiménez E.P., Flor-García M., Terreros-Roncal J., Rábano A., Cafini F., Pallas-Bazarra N., Ávila J., Llorens-Martín M. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat. Med. 2019;25:554–560. doi: 10.1038/s41591-019-0375-9. PubMed DOI
Kempermann G., Gage F.H., Aigner L., Song H., Curtis M.A., Thuret S., Kuhn H.G., Jessberger S., Frankland P.W., Cameron H.A., et al. Human adult neurogenesis: Evidence and remaining questions. Cell Stem Cell. 2018;23:25–30. doi: 10.1016/j.stem.2018.04.004. PubMed DOI PMC
Gage F.H. Adult neurogenesis in mammals. Science. 2019;364:827–828. doi: 10.1126/science.aav6885. PubMed DOI
Northcott P.A., Buchhalter I., Morrissy A.S., Hovestadt V., Weischenfeldt J., Ehrenberger T., Groebner S., Segura-Wang M., Zichner T., Rudneva V.A., et al. The whole-genome landscape of medulloblastoma subtypes. Nature. 2017;547:311–317. doi: 10.1038/nature22973. PubMed DOI PMC
Archer T.C., Ehrenberger T., Mundt F., Gold M.P., Krug K., Mah C.K., Mahoney E.L., Daniel C.J., Lenail A., Ramamoorthy D., et al. Proteomics, Post-translational Modifications, and Integrative Analyses Reveal Molecular Heterogeneity within Medulloblastoma Subgroups. Cancer Cell. 2018;34:396–410. doi: 10.1016/j.ccell.2018.08.004. PubMed DOI PMC
Phoenix T.N., Patmore D.M., Boop S., Boulos N., Jacus M.O., Patel Y.T., Roussel M.F., Finkelstein D., Goumnerova L., Perreault S., et al. Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell. 2016;29:508–522. doi: 10.1016/j.ccell.2016.03.002. PubMed DOI PMC
Aldape K., Brindle K.M., Chesler L., Chopra R., Gajjar A., Gilbert M.R., Gottardo N., Gutmann D.H., Hargrave D., Holland E.C., et al. Challenges to curing primary brain tumours. Nat. Rev. Clin. Oncol. 2019;16:509–520. doi: 10.1038/s41571-019-0177-5. PubMed DOI PMC
Krishnatry R., Zhukova N., Stucklin A.S.G., Pole J.D., Mistry M., Fried I., Ramaswamy V., Bartels U., Huang A., Laperriere N., et al. Clinical and treatment factors determining long-term outcomes for adult survivors of childhood low-grade glioma: A population-based study. Cancer. 2016;122:1261–1269. doi: 10.1002/cncr.29907. PubMed DOI
Pilz G.A., Bottes S., Betizeau M., Jörg D.J., Carta S., Simons B.D., Helmchen F., Jessberger S. Live imaging of neurogenesis in the adult mouse hippocampus. Science. 2018;359:658–662. doi: 10.1126/science.aao5056. PubMed DOI PMC