Molybdenum Sulfide Electrocatalysis is Dramatically Influenced by Solvents Used for Its Dispersions

. 2018 Oct 31 ; 3 (10) : 14371-14379. [epub] 20181030

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31458125

Transition metal dichalcogenides, especially MoS2 and related MoS3, have attracted attention as potential replacement of platinum for electrochemical energy applications. These materials are typically treated before the use in solvents. It is assumed that these solvents do not influence follow-up electrochemistry. Here, we show that the oxygen reduction overpotentials as well as inherent electrochemistry of MoS3 is dramatically influenced by solvents used, them being water, acetonitrile, dimethylformamide, or ethanol. This has a profound impact on the interpretation of the electrochemical studies and the choice of MoS x solvent treatment.

Zobrazit více v PubMed

Merki D.; Hu X. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 2011, 4, 3878–3888. 10.1039/c1ee01970h. DOI

Chia X.; Eng A. Y. S.; Ambrosi A.; Tan S. M.; Pumera M. Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem. Rev. 2015, 115, 11941–11966. 10.1021/acs.chemrev.5b00287. PubMed DOI

Morales-Guio C. G.; Hu X. Amorphous molybdenum sulfides as hydrogen evolution catalysts. Acc. Chem. Res. 2014, 47, 2671–2681. 10.1021/ar5002022. PubMed DOI

Eftekhari A. Molybdenum diselenide (MoSe2) for energy storage, catalysis, and optoelectronics. Appl. Mater. Today 2017, 8, 1–17. 10.1016/j.apmt.2017.01.006. DOI

Chia X.; Pumera M. Inverse opal-like porous mosex films for hydrogen evolution catalysis: overpotential-pore size dependence. ACS Appl. Mater. Interfaces 2018, 10, 4937–4945. 10.1021/acsami.7b17800. PubMed DOI

Velický M.; Toth P. S. From two-dimensional materials to their heterostructures: An electrochemist’s perspective. Appl. Mater. Today 2017, 8, 68–103. 10.1016/j.apmt.2017.05.003. DOI

Chia X.; Sutrisnoh N. A. A.; Pumera M. Tunable Pt-MoSx Hybrid Catalysts for Hydrogen Evolution. ACS Appl. Mater. Interfaces 2018, 10, 8702–8711. 10.1021/acsami.7b19346. PubMed DOI

Jaouen K.; Henrotte O.; Campidelli S.; Jousselme B.; Derycke V.; Cornut R. Localized electrochemistry for the investigation and the modification of 2D materials. Appl. Mater. Today 2017, 8, 116–124. 10.1016/j.apmt.2017.05.001. DOI

Chien F. Z.; Moss S. C.; Liang K. S.; Chianelli R. R. Local and intermediate-range structure of amorphous MoS3: Model calculation study. Phys. Rev. B: Condens. Matter Mater. Phys. 1984, 29, 4606–4615. 10.1103/physrevb.29.4606. DOI

Hibble S. J.; Wood G. B. Modeling the Structure of Amorphous MoS3: A Neutron Diffraction and Reverse Monte Carlo Study. J. Am. Chem. Soc. 2004, 126, 959–965. 10.1021/ja037666o. PubMed DOI

Bélanger D.; Laperriére G.; Marsan B. The electrodeposition of amorphous molybdenum sulfide. J. Electroanal. Chem. 1993, 347, 165–183. 10.1016/0022-0728(93)80086-w. DOI

Merki D.; Fierro S.; Vrubel H.; Hu X. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2011, 2, 1262–1267. 10.1039/c1sc00117e. DOI

Vrubel H.; Merki D.; Hu X. Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ. Sci. 2012, 5, 6136–6144. 10.1039/c2ee02835b. DOI

Tang M. L.; Grauer D. C.; Lassalle-Kaiser B.; Yachandra V. K.; Amirav L.; Long J. R.; Yano J.; Alivisatos A. P. Structural and Electronic Study of an Amorphous MoS3 Hydrogen-Generation Catalyst on a Quantum-Controlled Photosensitizer. Angew. Chem., Int. Ed. 2011, 50, 10203–10207. 10.1002/anie.201104412. PubMed DOI

Benck J. D.; Chen Z.; Kuritzky L. Y.; Forman A. J.; Jaramillo T. F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. ACS Catal. 2012, 2, 1916–1923. 10.1021/cs300451q. DOI

Merki D.; Vrubel H.; Rovelli L.; Fierro S.; Hu X. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 2012, 3, 2515–2525. 10.1039/c2sc20539d. DOI

Dinda D.; Ahmed M. E.; Mandal S.; Mondal B.; Saha S. K. Amorphous molybdenum sulfide quantum dots: an efficient hydrogen evolution electrocatalyst in neutral medium. J. Mater. Chem. A 2016, 4, 15486–15493. 10.1039/c6ta06101j. DOI

Lu A.-Y.; Yang X.; Tseng C.-C.; Min S.; Lin S.-H.; Hsu C.-L.; Li H.; Idriss H.; Kuo J.-L.; Huang K.-W.; Li L.-J. High-Sulfur-Vacancy Amorphous Molybdenum Sulfide as a High Current Electrocatalyst in Hydrogen Evolution. Small 2016, 12, 5530–5537. 10.1002/smll.201602107. PubMed DOI

Pham K.-C.; Chang Y.-H.; McPhail D. S.; Mattevi C.; Wee A. T. S.; Chua D. H. C. Amorphous Molybdenum Sulfide on Graphene-Carbon Nanotube Hybrids as Highly Active Hydrogen Evolution Reaction Catalysts. ACS Appl. Mater. Interfaces 2016, 8, 5961–5971. 10.1021/acsami.5b09690. PubMed DOI

Ge X.; Chen L.; Zhang L.; Wen Y.; Hirata A.; Chen M. Nanoporous Metal Enhanced Catalytic Activities of Amorphous Molybdenum Sulfide for High-Efficiency Hydrogen Production. Adv. Mater. 2014, 26, 3100–3104. 10.1002/adma.201305678. PubMed DOI

Liu B.; Jin Z.; Bai L.; Liang J.; Zhang Q.; Wang N.; Liu C.; Wei C.; Zhao Y.; Zhang X. Molybdenum-supported amorphous MoS3 catalyst for efficient hydrogen evolution in solar-water-splitting devices. J. Mater. Chem. A 2016, 4, 14204–14212. 10.1039/c6ta04789k. DOI

Luxa J.; Mazánek V.; Bouša D.; Sedmidubský D.; Pumera M.; Sofer Z. Graphene-Amorphous Transition-Metal Chalcogenide (MoS x , WS x ) Composites as Highly Efficient Hybrid Electrocatalysts for the Hydrogen Evolution Reaction. ChemElectroChem 2016, 3, 565–571. 10.1002/celc.201500497. DOI

Li D. J.; Maiti U. N.; Lim J.; Choi D. S.; Lee W. J.; Oh Y.; Lee G. Y.; Kim S. O. Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction. Nano Lett. 2014, 14, 1228–1233. 10.1021/nl404108a. PubMed DOI

Chang Y.-H.; Lin C.-T.; Chen T.-Y.; Hsu C.-L.; Lee Y.-H.; Zhang W.; Wei K.-H.; Li L.-J. Highly Efficient Electrocatalytic Hydrogen Production by MoSxGrown on Graphene-Protected 3D Ni Foams. Adv. Mater. 2013, 25, 756–760. 10.1002/adma.201202920. PubMed DOI

Yu L.; Xia B. Y.; Wang X.; Lou X. W. General Formation of M-MoS3 (M = Co, Ni) Hollow Structures with Enhanced Electrocatalytic Activity for Hydrogen Evolution. Adv. Mater. 2016, 28, 92–97. 10.1002/adma.201504024. PubMed DOI

Vrubel H.; Moehl T.; Grätzel M.; Hu X. Revealing and accelerating slow electron transport in amorphous molybdenum sulphide particles for hydrogen evolution reaction. Chem. Commun. 2013, 49, 8985–8987. 10.1039/c3cc45416a. PubMed DOI

Lassalle-Kaiser B.; Merki D.; Vrubel H.; Gul S.; Yachandra V. K.; Hu X.; Yano J. Evidence from in situ X-ray absorption spectroscopy for the involvement of terminal disulfide in the reduction of protons by an amorphous molybdenum sulfide electrocatalyst. J. Am. Chem. Soc. 2015, 137, 314–321. 10.1021/ja510328m. PubMed DOI PMC

Ting L. R. L.; Deng Y.; Ma L.; Zhang Y.-J.; Peterson A. A.; Yeo B. S. Catalytic activities of sulfur atoms in amorphous molybdenum sulfide for the electrochemical hydrogen evolution reaction. ACS Catal. 2016, 6, 861–867. 10.1021/acscatal.5b02369. DOI

Tran P. D.; Tran T. V.; Orio M.; Torelli S.; Truong Q. D.; Nayuki K.; Sasaki Y.; Chiam S. Y.; Yi R.; Honma I.; Barber J.; Artero V. Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide. Nat. Mater. 2016, 15, 640–646. 10.1038/nmat4588. PubMed DOI PMC

Pan Y.; Guan W. Prediction of new stable structure, promising electronic and thermodynamic properties of MoS 3 : Ab initio calculations. J. Power Sources 2016, 325, 246–251. 10.1016/j.jpowsour.2016.06.044. DOI

Li Y.; Yu Y.; Huang Y.; Nielsen R. A.; Goddard W. A.; Li Y.; Cao L. Engineering the composition and crystallinity of molybdenum sulfide for high-performance electrocatalytic hydrogen evolution. ACS Catal. 2015, 5, 448–455. 10.1021/cs501635v. DOI

Liang K. S.; Cramer S. P.; Johnston D. C.; Chang C. H.; Jacobson A. J.; deNeufville J. P.; Chianelli R. R. Amorphous MoS3 and WS3. J. Non-Cryst. Solids 1980, 42, 345–356. 10.1016/0022-3093(80)90035-6. DOI

Liang K. S.; deNaufville J. P.; Jacobson A. J.; Chianelli R. R.; Betts F. Structure of amorphous transition metal sulfides. J. Non-Cryst. Solids 1980, 35–36, 1249–1254. 10.1016/0022-3093(80)90369-5. DOI

Hibble S. J.; Walton R. I.; Pickup D. M.; Hannon A. C. Amorphous MoS3: clusters or chains? The structural evidence. J. Non-Cryst. Solids 1998, 232–234, 434–439. 10.1016/s0022-3093(98)00393-7. DOI

Cramer S. P.; Liang K. S.; Jacobson A. J.; Chang C. H.; Chianelli R. R. EXAFS studies of amorphous molybdenum and tungsten trisulfides and triselenides. Inorg. Chem. 1984, 23, 1215–1221. 10.1021/ic00177a010. DOI

Weber T.; Muijsers J. C.; Niemantsverdriet J. W. Structure of Amorphous MoS3. J. Phys. Chem. 1995, 99, 9194–9200. 10.1021/j100022a037. DOI

Vrubel H.; Hu X. Growth and activation of an amorphous molybdenum sulfide hydrogen evolving catalyst. ACS Catal. 2013, 3, 2002–2011. 10.1021/cs400441u. DOI

Yang J.; Shin H. S. Recent advances in layered transition metal dichalcogenides for hydrogen evolution reaction. J. Mater. Chem. A 2014, 2, 5979–5985. 10.1039/c3ta14151a. DOI

Ambrosi A.; Sofer Z.; Pumera M. Lithium Intercalation Compound Dramatically Influences the Electrochemical Properties of Exfoliated MoS2. Small 2015, 11, 605–612. 10.1002/smll.201400401. PubMed DOI

Ambrosi A.; Sofer Z.; Pumera M. 2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. Chem. Commun. 2015, 51, 8450–8453. 10.1039/c5cc00803d. PubMed DOI

Chia X.; Ambrosi A.; Sofer Z.; Luxa J.; Pumera M. Catalytic and charge transfer properties of transition metal dichalcogenides arising from electrochemical pretreatment. ACS Nano 2015, 9, 5164–5179. 10.1021/acsnano.5b00501. PubMed DOI

Latiff N. M.; Wang L.; Mayorga-Martinez C. C.; Sofer Z.; Fisher A. C.; Pumera M. Valence and oxide impurities in MoS2 and WS2 dramatically change their electrocatalytic activity towards proton reduction. Nanoscale 2016, 8, 16752–16760. 10.1039/c6nr03086f. PubMed DOI

Benoist L.; Gonbeau D.; Pfister-Guillouzo G.; Schmidt E.; Meunier G.; Levasseur A. XPS analysis of lithium intercalation in thin films of molybdenum oxysulphides. Surf. Interface Anal. 1994, 22, 206–210. 10.1002/sia.740220146. DOI

Jiao H.; Li Y.-W.; Delmon B.; Halet J.-F. The Structure and Possible Catalytic Sites of Mo3S9as a Model of Amorphous Molybdenum Trisulfide: A Computational Study. J. Am. Chem. Soc. 2001, 123, 7334–7339. 10.1021/ja0034085. PubMed DOI

Kibsgaard J.; Jaramillo T. F.; Besenbacher F. Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2– clusters. Nat. Chem. 2014, 6, 248–253. 10.1038/nchem.1853. PubMed DOI

Eng A. Y. S.; Ambrosi A.; Sofer Z.; Šimek P.; Pumera M. Electrochemistry of transition metal dichalcogenides: strong dependence on the metal-to-chalcogen composition and exfoliation method. ACS Nano 2014, 8, 12185–12198. 10.1021/nn503832j. PubMed DOI

McCreery R. L. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 2008, 108, 2646–2687. 10.1021/cr068076m. PubMed DOI

Swain G. M.Solid Electrode Materials. Handbook of Electrochemistry; Elsevier, 2007; pp 111–153.

Punckt C.; Pope M. A.; Liu J.; Lin Y.; Aksay I. A. Electrochemical performance of graphene as effected by electrode porosity and graphene functionalization. Electroanalysis 2010, 22, 2834–2841. 10.1002/elan.201000367. DOI

Dorim A. C. Â.; Aleixo H.; Barcellos E. d. S.; Okumura L. L. Influence of the Solvent on the “Casting” Methodology for MWCNT-Modified Glassy Carbon and Platinum Electrodes. Electroanalysis 2015, 27, 2663–2669. 10.1002/elan.201500265. DOI

Chua C. K.; Loo A. H.; Pumera M. Nanostructured MoS2 Nanorose/Graphene Nanoplatelet Hybrids for Electrocatalysis. Chem.—Eur. J. 2016, 22, 5969–5975. 10.1002/chem.201504875. PubMed DOI

Tan S. M.; Sofer Z.; Luxa J.; Pumera M. Aromatic-exfoliated transition metal dichalcogenides: implications for inherent electrochemistry and hydrogen evolution. ACS Catal. 2016, 6, 4594–4607. 10.1021/acscatal.6b00761. DOI

Chia X.; Adriano A.; Lazar P.; Sofer Z.; Luxa J.; Pumera M. Layered Platinum Dichalcogenides (PtS2, PtSe2, and PtTe2) Electrocatalysis: Monotonic Dependence on the Chalcogen Size. Adv. Funct. Mater. 2016, 26, 4306–4318. 10.1002/adfm.201505402. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...