Feather steroid hormone concentrations in relation to age, sex, and molting time in a long-distance migratory passerine
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31463000
PubMed Central
PMC6706234
DOI
10.1002/ece3.5447
PII: ECE35447
Knihovny.cz E-zdroje
- Klíčová slova
- barn swallow, feather corticosterone, feather testosterone, keratinous matrix, liquid chromatography–tandem mass spectrometry, ptilochronology, stress,
- Publikační typ
- časopisecké články MeSH
In birds, concentrations of testosterone (T) and corticosterone (Cort) are closely connected with many morphological, behavioral, and other physiological traits, including reproduction, metabolism, immunity, and fitness. The direction of the effect of these hormones on above-mentioned traits, and the potential feedback between hormones are in general unclear; in addition, knowledge on how age and sex can affect T and Cort concentrations is still inconsistent. Our study used a novel method to analyze testosterone and corticosterone in feathers (Tf, Cortf) based on the precolumn chemical derivatization of hormones before liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Unlike previously used methods (RIA, EIA), our analytical procedure allows simultaneous analysis of both hormones from small amounts of feathers (4-25 mg) and, thus, overcomes the problem of insufficient detection limits. We applied this method to reveal associations between Tf and Cortf hormone concentrations and feather growth, age, and sex in feathers grown during the postbreeding (flanks) and prebreeding (tails) periods in barn swallows (Hirundo rustica). There was neither a correlation between prebreeding and postbreeding Tf, nor between prebreeding and postbreeding Cortf. Tail Cortf concentrations were negatively associated with tail feather growth rates. Feather hormone concentrations were correlated in the prebreeding period, negatively in males but positively in females. Both Cortf and Tf were higher in young birds compared to older ones, indicating either an age-related decrease in hormone concentrations within individuals, or the selective disappearance of individuals with high steroid concentrations. Males and females did not differ in Cortf, but Tf concentrations were higher in males than females, particularly during the prebreeding period. In this study, we provide an effective method for analyzing hormones in feathers in an ecological context, especially in situations when the total amount of feathers available for the analysis is limited.
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Institute of Vertebrate Biology Czech Academy of Sciences Brno Czech Republic
Zobrazit více v PubMed
Adkins‐Regan, E. (2005). Hormones and animal social behavior. Princeton, NJ: Princeton University Press.
Angelier, F. , Shaffer, S. A. , Weimerskirch, H. , & Chastel, O. (2006). Effect of age, breeding experience and senescence on corticosterone and prolactin levels in a long‐lived seabird: The wandering albatross. General and Comparative Endocrinology, 149, 1–9. 10.1016/j.ygcen.2006.04.006 PubMed DOI
Bautista, L. M. , Silván, G. , Cáceres, S. , Martínez‐Fernández, L. , Bravo, C. , Illera, J. C. , … Blanco, G. (2013). Faecal sexual steroids in sex typing and endocrine status of great bustards. European Journal of Wildlife Research, 59, 815–822. 10.1007/s10344-013-0735-6 DOI
Berk, S. , McGettrick, J. , Hansen, W. , & Breuner, C. (2016). Methodological considerations for measuring glucocorticoid metabolites in feathers. Conservation Physiology, 4(1), cow020 10.1093/conphys/cow020 PubMed DOI PMC
Bílková, Z. , Adámková, M. , Albrecht, T. , & Šimek, Z. (2019). Determination of testosterone and corticosterone in feathers using liquid chromatography‐mass spectrometry. Journal of Chromatography A, 1590, 96–103. 10.1016/j.chroma.2018.12.069 PubMed DOI
Bonier, F. , Martin, P. , Moore, I. , & Wingfield, J. (2009). Do baseline glucocorticoids predict fitness? Trends in Ecology and Evolution, 24(11), 634–642. 10.1016/j.tree.2009.04.013 PubMed DOI
Bortolotti, G. R. , Marchant, T. A. , Blas, J. , & German, T. (2008). Corticosterone in feathers is a long‐term, integrated measure of avian stress physiology. Functional Ecology, 22, 494–500. 10.1111/j.1365-2435.2008.01387.x DOI
Boves, T. , Fairhurst, G. , Rushing, C. , & Buehler, D. (2016). Feather corticosterone levels are related to age and future body condition, but not to subsequent fitness, in a declining migratory songbird. Conservation Physiology, 4(1), cow041 10.1093/conphys/cow041 PubMed DOI PMC
Braude, S. , Tang‐Martinez, Z. , & Taylor, G. (1999). Stress, testosterone, and the immunoredistribution hypothesis. Behavioral Ecology, 10, 345–350. 10.1093/beheco/10.3.345 DOI
Buchanan, K. (2000). Stress and the evolution of condition‐dependent signals. Trends in Ecology & Evolution, 15, 156–160. 10.1016/S0169-5347(99)01812-1 PubMed DOI
Crawley, M. (2013). The R book. Chichester, UK: Wiley.
Day, L. , McBroom, J. , & Schlinger, B. (2006). Testosterone increases display behaviors but does not stimulate growth of adult plumage in male golden‐collared manakins (Manacus vitellinus). Hormones and Behavior, 49, 223–232. 10.1016/j.yhbeh.2005.07.006 PubMed DOI
De Ridder, E. , Pinxten, R. , Mees, V. , & Eens, M. (2002). Short‐ and long‐term effects of male‐like concentrations of testosterone on female European Starlings (Sturnus vulgaris). Auk, 119, 487–497. 10.1642/0004-8038(2002)119[0487:SALTEO]2.0.CO;2 DOI
Duckworth, R. , Mendonca, M. , & Hill, G. (2001). A condition dependent link between testosterone and disease resistance in the house finch. Proceedings of the Royal Society B: Biological Sciences, 268(1484), 2467–2472. 10.1098/rspb.2001.1827 PubMed DOI PMC
Ducrest, A. , Keller, L. , & Roulin, A. (2008). Pleiotropy in the melanocortin system, coloration and behavioural syndromes. Trends in Ecology & Evolution, 23, 502–510. 10.1016/j.tree.2008.06.001 PubMed DOI
Duffy, D. , Bentley, G. , Drazen, D. , & Ball, G. (2000). Effects of testosterone on cell‐mediated and humoral immunity in non‐breeding adult European starlings. Behavioral Ecology, 11(6), 654–662. 10.1093/beheco/11.6.654 DOI
Evans, M. , Goldsmith, A. , & Norris, S. (2000). The effects of testosterone on antibody production and plumage coloration in male house sparrows (Passer domesticus). Behavioral Ecology and Sociobiology, 47(3), 156–163. 10.1007/s002650050006 DOI
Fairhurst, G. D. , Berzins, L. L. , Bradley, D. W. , Laughlin, A. J. , Romano, A. , Romano, M. , … Clark, R. G. (2015). Assessing costs of carrying geolocators using feather corticosterone in two species of aerial insectivore. Royal Society Open Science, 2, 150004–150004. 10.1098/rsos.150004 PubMed DOI PMC
Fairhurst, G. , Dawson, R. , van Oort, H. , & Bortolotti, G. (2014). Synchronizing feather‐based measures of corticosterone and carotenoid‐dependent signals: What relationships do we expect? Oecologia, 174(3), 689–698. 10.1007/s00442-013-2830-5 PubMed DOI
Folstad, I. , & Karter, A. (1992). Parasites, bright males, and the immunocompetence handicap. American Naturalist, 139(3), 603–622. 10.1086/285346 DOI
Goutte, A. , Antoine, É. , Weimerskirch, H. , & Chastel, O. (2010). Age and the timing of breeding in a long‐lived bird: A role for stress hormones? Functional Ecology, 24, 1007–1016. 10.1111/j.1365-2435.2010.01712.x DOI
Goymann, W. , & Wingfield, J. (2014). Male‐to‐female testosterone ratios, dimorphism, and life history—what does it really tell us? Behavioral Ecology, 25, 685–699. 10.1093/beheco/aru019 DOI
Grunst, M. , Grunst, A. , Parker, C. , Romero, M. , & Rotenberry, J. (2014). Pigment‐specific relationships between feather corticosterone concentrations and sexual coloration. Behavioral Ecology, 26(3), 706–715. 10.1093/beheco/aru210 DOI
Harms, N. J. , Legagneux, P. , Gilchrist, H. G. , Bety, J. , Love, O. P. , Forbes, M. R. , … Soos, C. (2015). Feather corticosterone reveals effect of moulting conditions in the autumn on subsequent reproductive output and survival in an Arctic migratory bird. Proceedings of the Royal Society B: Biological Sciences, 282(1800), 20142085 10.1098/rspb.2014.2085 PubMed DOI PMC
Hau, M. , & Goymann, W. (2015). Endocrine mechanisms, behavioral phenotypes and plasticity: Known relationships and open questions. Frontiers in Zoology, 12, S7 10.1186/1742-9994-12-S1-S7 PubMed DOI PMC
Hau, M. , Ricklefs, R. , Wikelski, M. , Lee, K. , & Brawn, J. (2010). Corticosterone, testosterone and life‐history strategies of birds. Proceedings of the Royal Society B: Biological Sciences, 277(1697), 3203–3212. 10.1098/rspb.2010.0673 PubMed DOI PMC
Heidinger, B. , Nisbet, I. , & Ketterson, E. (2006). Older parents are less responsive to a stressor in a long‐lived seabird: A mechanism for increased reproductive performance with age? Proceedings of the Royal Society B: Biological Sciences, 273, 2227–2231. 10.1098/rspb.2006.3557 PubMed DOI PMC
Jenni, L. , & Winkler, R. (1994). Moult and ageing of European Passerines. London, UK: Academic Press.
Jenni‐Eiermann, S. , Helfenstein, F. , Vallat, A. , Glauser, G. , & Jenni, L. (2015). Corticosterone: Effects on feather quality and deposition into feathers. Methods in Ecology and Evolution, 6(2), 237–246. 10.1111/2041-210X.12314 DOI
Kempenaers, B. , Peters, A. , & Foerster, K. (2008). Sources of individual variation in plasma testosterone levels. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1497), 1711–1723. 10.1098/rstb.2007.0001 PubMed DOI PMC
Koren, L. , Nakagawa, S. , Burke, T. , Soma, K. , Wynne‐Edwards, K. , & Geffen, E. (2012). Non‐breeding feather concentrations of testosterone, corticosterone and cortisol are associated with subsequent survival in wild house sparrows. Proceedings of the Royal Society B: Biological Sciences, 279(1733), 1560–1566. 10.1098/rspb.2011.2062 PubMed DOI PMC
Lattin, C. , Reed, J. , DesRochers, D. , & Romero, L. (2011). Elevated corticosterone in feathers correlates with corticosterone‐induced decreased feather quality: A validation study. Journal of Avian Biology, 42(3), 247–252. 10.1111/j.1600-048X.2010.05310.x DOI
Lendvai, Á. , Giraudeau, M. , Bókony, V. , Angelier, F. , & Chastel, O. (2015). Within‐individual plasticity explains age‐related decrease in stress response in a short‐lived bird. Biology Letters, 11(7), 20150272 10.1098/rsbl.2015.0272 PubMed DOI PMC
Lendvai, Á. , Giraudeau, M. , Németh, J. , Bakó, V. , & McGraw, K. (2013). Carotenoid‐based plumage coloration reflects feather corticosterone levels in male house finches (Haemorhous mexicanus). Behavioral Ecology and Sociobiology, 67(11), 1817–1824. 10.1007/s00265-013-1591-9 DOI
Lessells, C. , & Boag, P. (1987). Unrepeatable repeatabilities: A common mistake. Auk, 104, 116–121. 10.2307/4087240 DOI
López‐Jiménez, L. , Blas, J. , Tanferna, A. , Cabezas, S. , Marchant, T. , Hiraldo, F. , & Sergio, F. (2016). Lifetime variation in feather corticosterone levels in a long‐lived raptor. Oecologia, 183, 315–326. 10.1007/s00442-016-3708-0 PubMed DOI
Møller, A. , Mousseau, T. , Rudolfsen, G. , Balbontín, J. , Marzal, A. , Hermosell, I. , & De Lope, F. (2009). Senescent sperm performance in old male birds. Journal of Evolutionary Biology, 22, 334–344. 10.1111/j.1420-9101.2008.01650.x PubMed DOI
Monclús, L. , Carbajal, A. , Tallo‐Parra, O. , Sabés‐Alsina, M. , Darwich, L. , Molina‐López, R. , & Lopez‐Bejar, M. (2017). Relationship between feather corticosterone and subsequent health status and survival in wild Eurasian Sparrowhawk. Journal of Ornithology, 158, 773–783. 10.1007/s10336-016-1424-5 DOI
Palme, R. (2005). Measuring fecal steroids: Guidelines for practical application. Annals of the New York Academy of Sciences, 1046(1), 75–80. 10.1196/annals.1343.007 PubMed DOI
Quillfeldt, P. , Masello, J. , Strange, I. , & Buchanan, K. (2006). Begging and provisioning of thin‐billed prions, Pachyptila belcheri, are related to testosterone and corticosterone. Animal Behaviour, 71(6), 1359–1369. 10.1016/j.anbehav.2005.09.015 DOI
R Core Team (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; Retrieved from http://www.R-project.org/
Reed, T. , Kruuk, L. , Wanless, S. , Frederiksen, M. , Cunningham, E. , & Harris, M. (2008). Reproductive senescence in a long‐lived seabird: Rates of decline in late‐life performance are associated with varying costs of early reproduction. American Naturalist, 171, E89–E101. 10.1086/524957 PubMed DOI
Roberts, M. , Buchanan, K. , & Evans, M. (2004). Testing the immunocompetence handicap hypothesis: A review of the evidence. Animal Behaviour, 68, 227–239. 10.1016/j.anbehav.2004.05.001 DOI
Romero, L. , Ramenofsky, M. , & Wingfield, J. (1997). Season and migration alters the corticosterone response to capture and handling in an Arctic Migrant, the White‐Crowned Sparrow (Zonotrichia leucophrys gambelii). Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 116(2), 171–177. 10.1016/S0742-8413(96)00208-3 PubMed DOI
Romero, L. , & Reed, J. (2005). Collecting baseline corticosterone samples in the field: Is under 3 min good enough? Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 140(1), 73–79. 10.1016/j.cbpb.2004.11.004 PubMed DOI
Romero, L. , Strochlic, D. , & Wingfield, J. (2005). Corticosterone inhibits feather growth: Potential mechanism explaining seasonal down regulation of corticosterone during molt. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 142(1), 65–73. 10.1016/j.cbpa.2005.07.014 PubMed DOI
Rubolini, D. , Massi, A. , & Spina, F. (2002). Replacement of body feathers is associated with low pre‐migratory energy stores in a long‐distance migratory bird, the barn swallow (Hirundo rustica). Journal of Zoology, 258(4), 441–447. 10.1017/S0952836902001590 DOI
Rutkowska, J. , Cichoń, M. , Puerta, M. , & Gil, D. (2005). Negative effects of elevated testosterone on female fecundity in zebra finches. Hormones and Behavior, 47(5), 585–591. 10.1016/j.yhbeh.2004.12.006 PubMed DOI
Safran, R. , Adelman, J. , McGraw, K. , & Hau, M. (2008). Sexual signal exaggeration affects physiological state in male barn swallows. Current Biology, 18, R461–R462. https://linkinghub.elsevier.com/retrieve/pii/S0960982208003722 PubMed
Saino, N. , & Møller, A. (1994). Secondary sexual characters, parasites and testosterone in the barn swallow, Hirundo rustica . Animal Behaviour, 48, 1325–1333. 10.1006/anbe.1994.1369 DOI
Saino, N. , Romano, M. , Caprioli, M. , Ambrosini, R. , Rubolini, D. , Scandolara, C. , & Romano, A. (2012). A ptilochronological study of carry‐over effects of conditions during wintering on breeding performance in the barn swallow Hirundo rustica . Journal of Avian Biology, 43(6), 513–524. 10.1111/j.1600-048X.2012.05622.x DOI
Star‐Weinstock, M. , Williamson, B. , Dey, S. , Pillai, S. , & Purkayastha, S. (2012). LC‐ESI‐MS/MS analysis of testosterone at sub‐picogram levels using a novel derivatization reagent. Analytical Chemistry, 84, 9310–9317. 10.1021/ac302036r PubMed DOI
Strong, R. , Pereira, G. , Shore, R. , Henrys, P. , & Pottinger, T. (2015). Feather corticosterone content in predatory birds in relation to body condition and hepatic metal concentration. General and Comparative Endocrinology, 214, 47–55. 10.1016/j.ygcen.2015.03.002 PubMed DOI
Wilcoxen, T. , Bridge, E. , Boughton, R. , Hahn, T. , & Schoech, S. (2013). Physiology of reproductive senescence in Florida scrub‐jays: Results from a long‐term study and GnRH challenge. General and Comparative Endocrinology, 194, 168–174. 10.1016/j.ygcen.2013.09.016 PubMed DOI
Dryad
10.5061/dryad.v4bf803