Inter-annual repeatability and age-dependent changes in plasma testosterone levels in a longitudinally monitored free-living passerine bird

. 2022 Jan ; 198 (1) : 53-66. [epub] 20211120

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34800165

Grantová podpora
GAUK 1158217 Grantová Agentura, Univerzita Karlova
PRIMUS/17/SCI/12 Univerzita Karlova v Praze
UNCE 204069 Univerzita Karlova v Praze
19-20152Y Grantová Agentura České Republiky
15-11782S Grantová Agentura České Republiky
SVV 260571/2021 Ministerstvo Školství, Mládeže a Tělovýchovy
IGA 20144268 Fakulta Životního Prostředí, Česká Zemědělská Univerzita v Praze
IGA 20154214 Fakulta Životního Prostředí, Česká Zemědělská Univerzita v Praze

Odkazy

PubMed 34800165
DOI 10.1007/s00442-021-05077-5
PII: 10.1007/s00442-021-05077-5
Knihovny.cz E-zdroje

While seasonal trends in testosterone levels are known from cross-cohort studies, data on testosterone inter-annual individual repeatability in wild birds are rare. Also, our understanding of hormonal age-dependent changes in testosterone levels is limited. We assessed plasma testosterone levels in 105 samples originating from 49 repeatedly captured free-living great tits (Parus major) sampled during the nesting to investigate their relative long-term repeatability and within-individual changes. Furthermore, we examined the inter-annual repeatability of condition-related traits (carotenoid- and melanin-based plumage ornamentation, ptilochronological feather growth rate, body mass, and haematological heterophil/lymphocyte ratio) and their relationships to testosterone levels. We show that testosterone levels are inter-annually repeatable in females, with a non-significant pattern in males, both in absolute values and individual ranks (indicating the maintenance of relative status in a population). In males, we found a quadratic dependence of testosterone levels on age, with a peak in midlife. In contrast, female testosterone levels showed no age-dependent trends. The inter-annual repeatability of condition-related traits ranged from zero to moderate and was mostly unrelated to plasma testosterone concentrations. However, males with elevated testosterone had significantly higher carotenoid-pigmented yellow plumage brightness, a trait presumably involved in mating. Showing inter-annual repeatability in testosterone levels, this research opens the way to further understanding the causes of variation in condition-related traits. Based on a longitudinal dataset, this study demonstrates that male plasma testosterone undergoes age-related changes that may regulate resource allocation. Our results thus suggest that, unlike females, male birds undergo hormonal senescence similar to mammals.

Zobrazit více v PubMed

Adámková M, Bílková Z, Tomášek O et al (2019) Feather steroid hormone concentrations in relation to age, sex, and molting time in a long-distance migratory passerine. Ecol Evol 9:9018–9026. https://doi.org/10.1002/ece3.5447 PubMed DOI PMC

Albrecht T, Vinkler M, Schnitzer J et al (2009) Extra-pair fertilizations contribute to selection on secondary male ornamentation in a socially monogamous passerine. J Evol Biol 22:2020–2030. https://doi.org/10.1111/j.1420-9101.2009.01815.x PubMed DOI

Alonso-Alvarez C, Pérez-Rodríguez L, Mateo R et al (2008) The oxidation handicap hypothesis and the carotenoid allocation trade-off. J Evol Biol 21:1789–1797. https://doi.org/10.1111/j.1420-9101.2008.01591.x PubMed DOI

Alonso-Alvarez C, Pérez-Rodríguez L, Garcia JT, Viñuela J (2009) Testosterone-mediated trade-offs in the old age: a new approach to the immunocompetence handicap and carotenoid-based sexual signalling. Proc R Soc B Biol Sci 276:2093–2101. https://doi.org/10.1098/rspb.2008.1891 DOI

Amet Y, Abalain JH, Daniel JY et al (1986) Testosterone regulation of androgen receptor levels in the uropygial gland of quails (Coturnix coturnix): a further proof for the androgen dependency of the uropygial gland. Gen Comp Endocrinol 62:210–216. https://doi.org/10.1016/0016-6480(86)90111-5 PubMed DOI

Balthazart J, Turek R, Ottinger MA (1984) Altered brain metabolism of testosterone is correlated with reproductive decline in aging quail. Horm Behav 18:330–345. https://doi.org/10.1016/0018-506X(84)90020-5 PubMed DOI

Bartoń K (2020) MuMIn: multi-model inference. R package version 1.43.17

Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw. https://doi.org/10.18637/jss.v067.i01 DOI

Bauerová P, Vinklerová J, Hraníček J et al (2017) Associations of urban environmental pollution with health-related physiological traits in a free-living bird species. Sci Total Environ 601–602:1556–1565. https://doi.org/10.1016/j.scitotenv.2017.05.276 PubMed DOI

Bauerová P, Krajzingrová T, Těšický M et al (2020) Longitudinally monitored lifetime changes in blood heavy metal concentrations and their health effects in urban birds. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.138002 PubMed DOI

Beletsky LD, Orians GH, Wingfield JC (1992) Year-to-year patterns of circulating levels of testosterone and corticosterone in relation to breeding density, experience, and reproductive success of the polygynous red-winged blackbird. Horm Behav 26:420–432. https://doi.org/10.1016/0018-506X(92)90011-J PubMed DOI

Belthoff JR, Dufty AM, Gauthreaux SA (1994) Plumage variation, plasma steroids and social dominance in male house finches. Condor 96:614–625. https://doi.org/10.2307/1369464 DOI

Bernstein RM, Setchell JM, Verrier D, Knapp LA (2012) Maternal effects and the endocrine regulation of mandrill growth. Am J Primatol 74:890–900. https://doi.org/10.1002/ajp.22038 PubMed DOI

Bouwhuis S, Sheldon BC, Verhulst S, Charmantier A (2009) Great tits growing old: selective disappearance and the partitioning of senescence to stages within the breeding cycle. Proc R Soc B Biol Sci 276:2769–2777. https://doi.org/10.1098/rspb.2009.0457 DOI

Braude S, Tang-Martinez Z, Taylor GT (1999) Stress, testosterone, and the immunoredistribution hypothesis. Behav Ecol 10:345–350. https://doi.org/10.1093/beheco/10.3.345 DOI

Buchanan KL, Evans MR, Goldsmith AR (2003) Testosterone, dominance signalling and immunosuppression in the house sparrow, Passer domesticus. Behav Ecol Sociobiol 55:50–59. https://doi.org/10.1007/s00265-003-0682-4 DOI

Burger HG, Dudley EC, Cui J et al (2000) A prospective longitudinal study of serum testosterone, dehydroepiandrosterone sulfate, and sex hormone-binding globulin levels through the menopause transition. J Clin Endocrinol Metab 85:2832–2838. https://doi.org/10.1210/jcem.85.8.6740 PubMed DOI

Chahal HS, Drake WM (2007) The endocrine system and ageing. J Pathol 211:173–180. https://doi.org/10.1002/path PubMed DOI

Crawley MJ (2013) The R book

Davis AK, Maney DL, Maerz JC (2008) The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Funct Ecol 22:760–772. https://doi.org/10.1111/j.1365-2435.2008.01467.x DOI

Duckworth RA, Sockman KW (2012) Proximate mechanisms of behavioural inflexibility: implications for the evolution of personality traits. Funct Ecol 26:559–566. https://doi.org/10.1111/j.1365-2435.2012.01966.x DOI

Duckworth RA, Mendonça MT, Hill GE (2004) Condition-dependent sexual traits and social dominance in the house finch. Behav Ecol 15:779–784. https://doi.org/10.1093/beheco/arh079 DOI

Evans MR, Goldsmith AR, Norris SRA (2000) The effects of testosterone on antibody production and plumage coloration in male house sparrows (Passer domesticus). Behav Ecol Sociobiol 47:156–163. https://doi.org/10.1007/s002650050006 DOI

Fargallo JA, Martínez-Padilla J, Toledano-Díaz A et al (2007) Sex and testosterone effects on growth, immunity and melanin coloration of nestling Eurasian kestrels. J Anim Ecol 76:201–209. https://doi.org/10.1111/j.1365-2656.2006.01193.x PubMed DOI

Floch JY, Floch HH, Morfin RF, Daniel JY (1988) Testosterone metabolism and its testosterone-dependent activation in the uropygial gland of quail. Endocr Res 14:93–107. https://doi.org/10.1080/07435808809036342 PubMed DOI

Folstad I, Karter AJ (1992) Parasites, bright males, and the immunocompetence handicap. Am Nat 139:603–622. https://doi.org/10.1086/285346 DOI

Forstmeier W, Schielzeth H (2011) Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner’s curse. Behav Ecol Sociobiol 65:47–55. https://doi.org/10.1007/s00265-010-1038-5 PubMed DOI

Fusani L (2008) Testosterone control of male courtship in birds. Horm Behav 54:227–233. https://doi.org/10.1016/j.yhbeh.2008.04.004 PubMed DOI

Galván I, Alonso-Alvarez C (2010) Yolk testosterone shapes the expression of a melanin-based signal in great tits: an antioxidant-mediated mechanism? J Exp Biol 213:3127–3130. https://doi.org/10.1242/jeb.045096 PubMed DOI

George EM, Rosvall KA (2018) Testosterone production and social environment vary with breeding stage in a competitive female songbird. Horm Behav 103:28–35. https://doi.org/10.1016/j.yhbeh.2018.05.015 PubMed DOI

Goymann W, Wingfield JC (2014) Male-to-female testosterone ratios, dimorphism, and life history—what does it really tell us? Behav Ecol 25:685–699. https://doi.org/10.1093/beheco/aru019 DOI

Greenwood PT, Harvey PH, Perrins CM (1979) The role of dispersal in the great tit (Parus major): the causes, consequences and heritability of natal dispersal. J Anim Ecol 48:123–142 DOI

Griffith SC, Parker TH, Olson VA (2006) Melanin-versus carotenoid-based sexual signals: is the difference really so black and red? Anim Behav 71:749–763. https://doi.org/10.1016/j.anbehav.2005.07.016 DOI

Grubb CT (2006) Ptilochronology: feather time and the biology of birds. Oxford University Press

Grunst AS, Rotenberry JT, Grunst ML (2014) Age-dependent relationships between multiple sexual pigments and condition in males and females. Behav Ecol 25:276–287. https://doi.org/10.1093/beheco/art124 DOI

Guindre-Parker S, Love OP (2014) Revisiting the condition-dependence of melanin-based plumage. J Avian Biol 45:29–33. https://doi.org/10.1111/j.1600-048X.2013.00190.x DOI

Harman SM, Metter EJ, Tobin JD et al (2001) Longitudinal effects of aging on serum total and free testosterone levels in healthy men. J Clin Endocrinol Metab 86:724–731. https://doi.org/10.1210/jcem.86.2.7219 PubMed DOI

Hau M, Goymann W (2015) Endocrine mechanisms, behavioral phenotypes and plasticity: known relationships and open questions From New Perspectives in Behavioural Development: Adaptive Shaping of Behaviour over a Lifetime? Front Zool 12:1–15. https://doi.org/10.1186/1742-9994-12-S1-S7 DOI

Hegyi G, Szigeti B, Torok J, Eens M (2007) Melanin, carotenoid and structural plumage ornaments: information content and role in great tits Parus major. J Avian Biol 38:698–708. https://doi.org/10.1111/j.2007.0908-8857.04075.x DOI

Hernández-López L, Cerda-Molina AL, Díaz-Díaz G et al (2012) Aging-related reproductive decline in the male spider monkey (Ateles geoffroyi). J Med Primatol 41:115–121. https://doi.org/10.1111/j.1600-0684.2011.00528.x PubMed DOI

Holtmann B, Lagisz M, Nakagawa S (2017) Metabolic rates, and not hormone levels, are a likely mediator of between-individual differences in behaviour: a meta-analysis. Funct Ecol. https://doi.org/10.1111/1365-2435.12779 DOI

Kempenaers B, Peters A, Foerster K (2008) Sources of individual variation in plasma testosterone levels. Philos Trans R Soc B Biol Sci 363:1711–1723. https://doi.org/10.1098/rstb.2007.0001 DOI

Ketterson ED (1992) Hormones and life histories : an integrative approach. Am Nat 140:S33–S62. https://doi.org/10.1086/285396 PubMed DOI

Ketterson ED, Nolan V, Wolf L et al (1991) Testosterone and avian life histories: the effect of experimentally elevated testosterone on corticosterone and body mass in dark-eyed juncos. Horm Behav 25:489–503. https://doi.org/10.1016/0018-506X(91)90016-B PubMed DOI

Ketterson ED, Nolan V, Sandell M (2005) Testosterone in females: Mediator of adaptive traits, constraint on sexual dimorphism, or both? Am Nat 166:S85-98. https://doi.org/10.1086/444602 PubMed DOI

Kimball RT (2006) hormonal control of coloration. In: Bird coloration I: measurements and mechanism. Harvard University Press, Cambridge

Klipker K, Wrzus C, Rauers A et al (2017) Within-person changes in salivary testosterone and physical characteristics of puberty predict boys’ daily affect. Horm Behav 95:22–32. https://doi.org/10.1016/j.yhbeh.2017.07.012 PubMed DOI

Kraus S, Krüger O, Guenther A (2020) Zebra finches bi-directionally selected for personality differ in repeatability of corticosterone and testosterone. Horm Behav. https://doi.org/10.1016/j.yhbeh.2020.104747 PubMed DOI

Kuznetsova A, Brockhoff PB, Christensen RHB (2017) {lmerTest} package: tests in linear mixed effects models. J Stat Softw 82:1–26. https://doi.org/10.18637/jss.v082.i13 DOI

Madsen V, Valkiunas G, Iezhova TA et al (2007) Testosterone levels and gular pouch coloration in courting magnificent frigatebird (Fregata magnificens): variation with age-class, visited status and blood parasite infection. Horm Behav 51:156–163. https://doi.org/10.1016/j.yhbeh.2006.09.010 PubMed DOI

Møller AP, Mateos-González F (2018) Plumage brightness and uropygial gland secretions in barn swallows. Curr Zool 65:177–182. https://doi.org/10.1093/cz/zoy042 DOI

Montano GA, Robeck TR, Steinman KJ, O’Brien JK (2017) Circulating anti-Müllerian hormone concentrations in relation to age and season in male and female beluga (Delphinapterus leucas). Reprod Fertil Dev 29:1642–1652. https://doi.org/10.1071/RD15537 PubMed DOI

Montgomerie R (2006) Analyzing colors. In: Bird coloration I: mechanisms and measurements. Harvard University Press, Cambridge

Moreno J, Gil D, Cantarero A, López-Arrabé J (2014) Extent of a white plumage patch covaries with testosterone levels in female Pied Flycatchers Ficedula hypoleuca. J Ornithol 155:639–648. https://doi.org/10.1007/s10336-014-1046-8 DOI

Moreno-Rueda G (2017) Preen oil and bird fitness: a critical review of the evidence. Biol Rev 92:2131–2143. https://doi.org/10.1111/brv.12324 PubMed DOI

Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x DOI

Needham KB, Dochtermann NA, Greives TJ (2016) General and Comparative Endocrinology Consistent individual variation in day, night, and GnRH-induced testosterone concentrations in house sparrows (Passer domesticus). Gen Comp Endocrinol. https://doi.org/10.1016/j.ygcen.2016.12.010 PubMed DOI

Nisbet ICT, Finch CE, Thompson N et al (1999) Endocrine patterns during aging in the common tern (Sterna hirundo). Gen Comp Endocrinol 114:279–286. https://doi.org/10.1006/gcen.1999.7255 PubMed DOI

Ottinger MA (1996) Aging in the avian brain: neuroendocrine considerations. Semin Avian Exot Pet Med 5:172–177. https://doi.org/10.1016/s1055-937x(96)80006-5 DOI

Perret M (1992) Environmental and social determinants of sexual function in the male lesser mouse lemur (Microcebus murinus). Folia Primatol 59:1–25. https://doi.org/10.1159/000156637 DOI

Peters A, Cockburn A, Cunningham R (2002) Testosterone treatment suppresses paternal care in superb fairy-wrens, Malurus cyaneus, despite their concurrent investment in courtship. Behav Ecol Sociobiol 51:538–547. https://doi.org/10.1007/s00265-002-0472-4 DOI

Pinheiro J, Bates D, DebRoy S, Sarkar D (2019) {nlme}: linear and nonlinear mixed effects models

Quesada J, Senar JC (2006) Comparing plumage colour measurements obtained directly from live birds and from collected feathers: the case of the great tit Parus major. J Avian Biol 37:609–616. https://doi.org/10.1111/j.0908-8857.2006.03636.x DOI

R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL. https://www.R-projectorg/

Rosvall KA, Bentz AB, George EM (2020) How research on female vertebrates contributes to an expanded challenge hypothesis. Horm Behav 123:104565. https://doi.org/10.1016/j.yhbeh.2019.104565 PubMed DOI

Rull IL, Nicolás L, Neri-Vera N et al (2016) Assortative mating by multiple skin color traits in a seabird with cryptic sexual dichromatism. J Ornithol 157:1049–1062. https://doi.org/10.1007/s10336-016-1352-4 DOI

Ryder TB, Horton BM, Moore IT (2011) Understanding testosterone variation in a tropical lek-breeding bird. Biol Lett 7:506–509. https://doi.org/10.1098/rsbl.2010.1219 PubMed DOI PMC

Ryder TB, Dakin R, Vernasco BJ et al (2020) Testosterone modulates status-speci fic patterns of cooperation in a social network. Am Nat. https://doi.org/10.1086/706236 PubMed DOI

Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82:518–529. https://doi.org/10.1002/mrd.22489 PubMed DOI PMC

Schoech SJ, Mumme RL, Wingfield JC (1996) Delayed breeding in the cooperatively breeding Florida scrub-jay (Aphelocoma coerulescens): inhibition or the absence of stimulation? Behav Ecol Sociobiol 39:77–90. https://doi.org/10.1007/s002650050269 DOI

Seddon RJ, Klukowski M (2012) Influence of stressor duration on leukocyte and hormonal responses in male southeastern five-lined skinks (Plestiodon inexpectatus). J Exp Zool Part A Ecol Genet Physiol 317:499–510. https://doi.org/10.1002/jez.1742 DOI

Senar JC, Quesada J (2006) Absolute and relative signals: a comparison between melanin-and carotenoid-based patches. Behaviour 143:589–595. https://doi.org/10.1163/156853906776759484 DOI

Senar JC, Figuerola J, Pascual J (2002) Brighter yellow blue tits make better parents. Proc R Soc B Biol Sci 269:257–261. https://doi.org/10.1098/rspb.2001.1882 DOI

Smith LC, Raouf SA, Bomberger Brown M et al (2005) Testosterone and group size in cliff swallows: testing the “challenge hypothesis” in a colonial bird. Horm Behav 47:76–82. https://doi.org/10.1016/j.yhbeh.2004.08.012 PubMed DOI

Stoffel MA, Nakagawa S, Schielzeth H (2017) rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol Evol 8:1639–1644. https://doi.org/10.1111/2041-210X.12797 DOI

Svensson L, Baker K (1992) Identification guide to European passerines, 4th edn. British Trust for Ornithology, Stockholm

Svobodová J, Gabrielová B, Synek P et al (2013) The health signalling of ornamental traits in the Grey Patridge (Perdix perdix). J Ornithol 154:717–725. https://doi.org/10.1007/s10336-013-0936-5 DOI

Svobodová J, Bauerová P, Eliáš J et al (2018) Sperm variation in Great Tit males (Parus major) is linked to a haematological health-related trait, but not ornamentation. J Ornithol 159:815–822. https://doi.org/10.1007/s10336-018-1559-7 DOI

Těšický M, Krajzingrová T, Świderská Z et al (2021) Longitudinal evidence for immunosenescence and inflammaging in free-living great tits. Exp Gerontol 154:111527. https://doi.org/10.1016/j.exger.2021.111527 PubMed DOI

Van De Pol M, Verhulst S (2006) Age-dependent traits: a new statistical model to separate within- and between- individual effects. Am Nat 167:766–773 DOI

Van De Pol M, Wright J (2009) A simple method for distinguishing within- versus between-subject effects using mixed models. Anim Behav 77:753–758. https://doi.org/10.1016/j.anbehav.2008.11.006 DOI

Van Duyse E, Pinxten R, Eens M (2003) Seasonal fluctuations in plasma testosterone levels and diurnal song activity in free-living male great tits. Gen Comp Endocrinol 134:1–9. https://doi.org/10.1016/S0016-6480(03)00213-2 PubMed DOI

Vermeulen A, Rubens R, Verdonck L (1972) Testosterone secretion and metabolism in male senescence. J Clin Endocrinol Metab 34:730–735. https://doi.org/10.1210/jcem-34-4-730 PubMed DOI

Vinkler M, Albrecht T (2010) Carotenoid maintenance handicap and the physiology of carotenoid-based signalisation of health. Naturwissenschaften 97:19–28. https://doi.org/10.1007/s00114-009-0595-9 PubMed DOI

Vinkler M, Schnitzer J, Munclinger P, Albrecht T (2012) Phytohaemagglutinin skin-swelling test in scarlet rosefinch males: low-quality birds respond more strongly. Anim Behav 83:17–23. https://doi.org/10.1016/j.anbehav.2011.10.001 DOI

Wingfield JC, Hegner RE, Dufty AM, Ball GF (1990) The “challenge hypothesis”: theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. Am Nat 136:829–846. https://doi.org/10.1086/285134 DOI

Whittaker DJ, Rosvall KA, Slowinski SP et al (2018) Songbird chemical signals reflect uropygial gland androgen sensitivity and predict aggression: implications for the role of the periphery in chemosignaling. J Comp Physiol A Neuroethol Sensory, Neural, Behav Physiol 204:5–15. https://doi.org/10.1007/s00359-017-1221-5 DOI

Wilcoxen TE, Bridge ES, Boughton RK et al (2013) Physiology of reproductive senescence in Florida scrub-jays: Results from a long-term study and GnRH challenge. Gen Comp Endocrinol 194:168–174. https://doi.org/10.1016/j.ygcen.2013.09.016 PubMed DOI

Wolf TE, Schaebs FS, Bennett NC et al (2018) Age and socially related changes in fecal androgen metabolite concentrations in free-ranging male giraffes. Gen Comp Endocrinol 255:19–25. https://doi.org/10.1016/j.ygcen.2017.09.028 PubMed DOI

Zhang H, Vedder O, Becker PH, Bouwhuis S (2015) Age-dependent trait variation: the relative contribution of within-individual change, selective appearance and disappearance in a long-lived seabird. J Anim Ecol 84:797–807. https://doi.org/10.1111/1365-2656.12321 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Nearly (?) sterile avian egg in a passerine bird

. 2024 Jan 16 ; 100 (1) : .

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...