Can Visceral Adiposity Index Serve as a Simple Tool for Identifying Individuals with Insulin Resistance in Daily Clinical Practice?
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA LF 2017 016
Palacký University Olomouc
RVO FNOL 00098892
Czech Ministry of Health
PubMed
31470593
PubMed Central
PMC6780575
DOI
10.3390/medicina55090545
PII: medicina55090545
Knihovny.cz E-zdroje
- Klíčová slova
- cardiometabolic risk, homeostasis model assessment of insulin resistance, metabolic syndrome, visceral adiposity index,
- MeSH
- abdominální obezita MeSH
- adipozita MeSH
- antropometrie * MeSH
- dospělí MeSH
- homeostáza MeSH
- index tělesné hmotnosti MeSH
- inzulinová rezistence fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- logistické modely MeSH
- metabolický syndrom diagnóza patofyziologie MeSH
- nitrobřišní tuk * MeSH
- obvod pasu MeSH
- rizikové faktory MeSH
- senzitivita a specificita MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Background and objectives: The visceral adiposity index (VAI), estimating visceral adiposity dysfunction through a simple formula, could serve as a useful tool for identifying individuals at higher cardiometabolic risk. Its relationship with insulin resistance (IR), assessed using the homeostasis model assessment of IR (HOMA-IR), and metabolic syndrome (MetS) components remains unclear. The study aimed to investigate the association of VAI with both HOMA-IR and MetS. Materials and Methods: After undergoing anthropometric and biochemical studies, 783 individuals were divided into three groups according to a number of present MetS components. The VAI cut-offs signaling MetS and HOMA-IR were determined by maximizing the sum of the sensitivity and specificity. Correlation analysis was performed to explore the associations between VAI and other tested parameters. A logistic stepwise regression analysis was applied to identify statistically significant determinants of HOMA-IR. Given the variability of reference values, two thresholds of HOMA-IR were applied, namely 2.0 and 3.8. Results: VAI increased significantly between the groups with a rising number of MetS components. The VAI cut-off for MetS was 2.37, with a sensitivity of 0.86 and a specificity of 0.78. The same cut-off point identified subjects with HOMA-IR = 3.8, with a sensitivity of 0.79 and a specificity of 0.66. The VAI cut-off for HOMA-IR = 2.0 was 1.89, with a sensitivity of 0.74 and a specificity of 0.68. The strongest correlations of VAI were noted with HOMA-IR (r = 0.51) and insulin (r = 0.49), respectively, while the strongest correlation of HOMA-IR was with waist circumference (r = 0.54). Not one of the routine parameters was a significant predictor in the regression analysis. Conclusions: The obtained results show an existing association of VAI with HOMA-IR. The high sensitivity and specificity of the cut-offs may allow the application of VAI in common clinical practice.
Zobrazit více v PubMed
Paniagua J.A. Nutrition, insulin resistance and dysfunctional adipose tissue determine the different components of metabolic syndrome. World J. Diabetes. 2016;7:483–514. doi: 10.4239/wjd.v7.i19.483. PubMed DOI PMC
World Health Organization The Top 10 Causes of Death. [(accessed on 19 June 2019)]; Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
Kassi E., Pervanidou P., Kaltsas G., Chrousos G. Metabolic syndrome: Definitions and controversies. BMC Med. 2011;9:48. doi: 10.1186/1741-7015-9-48. PubMed DOI PMC
Xu H., Li X., Adams H., Kubena K., Guo S. Etiology of Metabolic syndrome and dietary intervention. Int. J. Mol. Sci. 2019;20:128. doi: 10.3390/ijms20010128. PubMed DOI PMC
Eckel N., Li Y., Kuxhaus O., Stefan N., Hu F.B., Schulze M.B. Transition from metabolic healthy to unhealthy phenotypes and association with cardiovascular disease risk across BMI categories in 90,257 women (the Nurses’ Health Study): 30-year follow-up from a prospective cohort study. Lancet Diabetes Endocrinol. 2018;6:714–724. doi: 10.1016/S2213-8587(18)30137-2. PubMed DOI
Kramer C.K., Zinman B., Retnakaran R. Are metabolically healthy overweight and obesity benign conditions? A systematic review and meta-analysis. Ann. Intern. Med. 2013;159:758–769. doi: 10.7326/0003-4819-159-11-201312030-00008. PubMed DOI
Liu C., Wang C., Guan S., Liu H., Wu X., Zhang Z., Gu X., Zhang Y., Zhao Y., Tse L.A., et al. The prevalence of metabolically healthy and unhealthy obesity according to different criteria. Obes. Facts. 2019;12:78–90. doi: 10.1159/000495852. PubMed DOI PMC
Wallace T.M., Levy J.C., Matthews D.R. Use and abuse of HOMA modeling. Diabetes Care. 2004;27:1487–1495. doi: 10.2337/diacare.27.6.1487. PubMed DOI
Amato M.C., Pizzolanti G., Torregrossa V., Misiano G., Milano S., Giordano G. Visceral adiposity index (VAI) is predictive of an altered adipokine profile in patients with type 2 diabetes. PLoS ONE. 2014;9:e91969. doi: 10.1371/journal.pone.0091969. PubMed DOI PMC
Alberti K.G.M.M., Eckel R.H., Grundy S.M., Zimmet P.Z., Cleeman J.I., Donato K.A., Fruchart J.C., James W.P.T., Loria C.M., Smith S.C. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation. 2009;120:1640–1645. doi: 10.1161/CIRCULATIONAHA.109.192644. PubMed DOI
Ruopp M.D., Perkins N.J., Whitcomb B.W., Schisterman E.F. Youden Index and optimal cut-point estimated from observations affected by a lower limit of detection. Biom. J. 2008;50:419–430. doi: 10.1002/bimj.200710415. PubMed DOI PMC
Tang Q., Li X., Song P., Xu L. Optimal cut-off values for the homeostasis model assessment of insulin resistance (HOMA-IR) and pre-diabetes screening: Developments in research and prospects for the future. Drug Discov. Ther. 2015;9:380–385. doi: 10.5582/ddt.2015.01207. PubMed DOI
Horakova D., Stepanek L., Nagelova R., Pastucha D., Azeem K., Kollarova H. Total and high-molecular-weight adiponectin levels and prediction of insulin resistance. Endokrynol. Pol. 2018;69:375–380. doi: 10.5603/EP.a2018.0035. PubMed DOI
Dobiasova M., Frohlich J. The plasma parameter log (TG/HDL-C) as an atherogenic index: Correlation with lipoprotein particle size and esterification rate inapob-lipoprotein-depleted plasma (FERHDL) Clin. Biochem. 2001;34:583–588. doi: 10.1016/S0009-9120(01)00263-6. PubMed DOI
Pekgor S., Duran C., Berberoglu U., Eryilmaz M.A. The role of visceral adiposity index levels in predicting the presence of metabolic syndrome and insulin resistance in overweight and obese patients. Metab. Syndr. Relat. Disord. 2019;17:296–302. doi: 10.1089/met.2019.0005. PubMed DOI
Amato M.C., Giordano C., Pitrone M., Galluzzo A. Cut-off points of the visceral adiposity index (VAI) identifying a visceral adipose dysfunction associated with cardiometabolic risk in a Caucasian Sicilian population. Lipids Health Dis. 2011;10:183. doi: 10.1186/1476-511X-10-183. PubMed DOI PMC
Liu P.J., Ma F., Lou H.P., Chen Y. Visceral adiposity index is associated with pre-diabetes and type 2 diabetes mellitus in Chinese adults aged 20–50. Ann. Nutr. Metab. 2016;68:235–243. doi: 10.1159/000446121. PubMed DOI
Jabłonowska-Lietz B., Wrzosek M., Włodarczyk M., Nowicka G. New indexes of body fat distribution, visceral adiposity index, body adiposity index, waist-to-height ratio, and metabolic disturbances in the obese. Kardiol. Pol. 2017;75:1185–1191. doi: 10.5603/KP.a2017.0149. PubMed DOI
Krishna S.V.T., Kota S.K., Modi K.D. Glycemic variability: Clinical implications. Indian J. Endocrinol. Metab. 2013;17:611–619. doi: 10.4103/2230-8210.113751. PubMed DOI PMC
Li R., Li Q., Cui M., Ying Z., Li L., Zhong T., Huo Y., Xie P. Visceral adiposity index, lipid accumulation product and intracranial atherosclerotic stenosis in middle-aged and elderly Chinese. Sci. Rep. 2017;7:7951. doi: 10.1038/s41598-017-07811-7. PubMed DOI PMC
Randrianarisoa E., Lehn-Stefan A., Hieronimus A., Rietig R., Fritsche A., Machann J., Balletshofer B., Häring H.U., Stefan N., Rittig K. Visceral adiposity index as an independent marker of subclinical atherosclerosis in individuals prone to diabetes mellitus. J. Atheroscler. Thromb. 2019:47274. doi: 10.5551/jat.47274. PubMed DOI PMC
Biswas E., Choudhury A.K., Amin M.R., Khalequzzaman M., Chowdhury S., Kabir F.I., Sakib M.M., Mahabub E.E., Singha C.K. Visceral adiposity index score is the better predictor of clinical and coronary angiographic severity assessment than other adiposity indices in patients with acute coronary syndrome. Mymensingh Med. J. 2019;28:382–388. PubMed
Ma C.M., Liu X.L., Lu N., Wang R., Lu Q., Yin F.Z. Hypertriglyceridemic waist phenotype and abnormal glucose metabolism: A system review and meta-analysis. Endocrine. 2019;64:469–485. doi: 10.1007/s12020-019-01945-6. PubMed DOI
Marra N.F., Bechere Fernandes M.T., de Melo M.E., da Cruz R.M., Tess B.H. Fasting insulin resistance affects the prevalence of metabolically healthy obesity in Brazilian adolescents. Acta Paediatr. 2019;108:1295–1302. doi: 10.1111/apa.14684. PubMed DOI
Khawaja K.I., Mian S.A., Fatima A., Tahir G.M., Khan F.F., Burney S., Hasan A., Masud F. Phenotypic and metabolic dichotomy in obesity: Clinical, biochemical and immunological correlates of metabolically divergent obese phenotypes in healthy South Asian adults. Singap. Med. J. 2018;59:431–438. doi: 10.11622/smedj.2018019. PubMed DOI PMC