Evidence from routine clinical practice: EMPRISE provides a new perspective on CVOTs

. 2019 Aug 31 ; 18 (1) : 115. [epub] 20190831

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31472683
Odkazy

PubMed 31472683
PubMed Central PMC6717330
DOI 10.1186/s12933-019-0920-3
PII: 10.1186/s12933-019-0920-3
Knihovny.cz E-zdroje

EMPA-REG OUTCOME is recognised by international guidelines as a landmark study that showed a significant cardioprotective benefit with empagliflozin in patients with type 2 diabetes (T2D) and cardiovascular disease. To assess the impact of empagliflozin in routine clinical practice, the ongoing EMPRISE study is collecting real-world evidence to compare effectiveness, safety and health economic outcomes between empagliflozin and DPP-4 inhibitors. A planned interim analysis of EMPRISE was recently published, confirming a substantial reduction in hospitalisation for heart failure with empagliflozin across a diverse patient population. In this commentary article, we discuss the new data in the context of current evidence and clinical guidelines, as clinicians experienced in managing cardiovascular risk in patients with T2D. We also look forward to what future insights EMPRISE may offer, as evidence is accumulated over the next years to complement the important findings of EMPA-REG OUTCOME.

3rd Department of Internal Medicine 1st Faculty of Medicine Charles University Prague Prague Czech Republic

Carol Davila University of Medicine and Pharmacy Bucharest Romania

Clinic for Endocrinology Diabetes and Metabolic Diseases Clinical Centre of Serbia Faculty of Medicine University of Belgrade Belgrade Serbia

Clinic of Internal Diseases Family Medicine and Oncology Institute of Medicine Faculty of Medicine Vilnius University Hospital Santaros Klinikos Vilnius University Vilnius Lithuania

Department of Endocrinology Diabetes and Metabolic Diseases University Medical Centre Ljubljana Slovenia

Department of Internal Medicine 1 and CD Laboratory for Metabolic Crosstalk Medical University of Innsbruck Innsbruck Tirol Austria

Department of Internal Medicine 4 Faculty of Medicine Safarik University in Košice Košice Slovakia

Department of Medicine András Jósa Teaching Hospital Nyíregyháza Hungary

Diabetes and Endocrinology Clinic Clalit Medical Services Ramat Gan Israel

Estonian Diabetes Center Tallinn Estonia

Latvian Center of Cardiology Stradiņš Clinical University Hospital Rīga Stradiņš University Riga Latvia

Medical University of Silesia Katowice Poland

Medical University of Vienna Vienna Austria

National Medical Academy for Postgraduate Education Kiev Ukraine

Russian Medical Academy for Continuous Professional Education Ministry of Education of the Russian Federation Moscow Russia

School of Medicine University of Zagreb Vuk Vrhovac University Clinic UH Merkur Zagreb Croatia

Sheba Medical Center and Tel Aviv University Tel Aviv Israel

Zobrazit více v PubMed

Davies MJ, et al. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) Diabetologia. 2018;61:2461–2498. doi: 10.1007/s00125-018-4729-5. PubMed DOI

American Diabetes Association 10. Cardiovascular disease and risk management: standards of medical care in diabetes—2019. Diabetes Care. 2019;42:S103–S123. doi: 10.2337/dc19-S010. PubMed DOI

American Diabetes Association 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes—2019. Diabetes Care. 2019;42:S90–S102. doi: 10.2337/dc19-S009. PubMed DOI

Piepoli MF, et al. 2016 European guidelines on cardiovascular disease prevention in clinical practice: the Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR) Eur Heart J. 2016;37:2315–2381. doi: 10.1093/eurheartj/ehw106. PubMed DOI PMC

Arnett DK, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease. J Am Coll Cardiol. 2019 doi: 10.1016/j.jacc.2019.03.010. PubMed DOI

Das SR, et al. 2018 ACC expert consensus decision pathway on novel therapies for cardiovascular risk reduction in patients with type 2 diabetes and atherosclerotic cardiovascular disease. J Am Coll Cardiol. 2018;72:3200–3223. doi: 10.1016/j.jacc.2018.09.020. PubMed DOI PMC

Zinman B, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–2128. doi: 10.1056/NEJMoa1504720. PubMed DOI

Neal B, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–657. doi: 10.1056/NEJMoa1611925. PubMed DOI

Wiviott SD, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2018;380:347–357. doi: 10.1056/NEJMoa1812389. PubMed DOI

Schnell O, et al. Report from the 3rd cardiovascular outcome trial (CVOT) summit of the diabetes & cardiovascular disease (D&CVD) EASD Study Group. Cardiovasc Diabetol. 2018;17:30. doi: 10.1186/s12933-018-0667-2. PubMed DOI PMC

Fitchett D, et al. Effects of empagliflozin on risk for cardiovascular death and heart failure hospitalization across the spectrum of heart failure risk in the EMPA-REG OUTCOME® trial. Eur Heart J. 2018;39:363–370. doi: 10.1093/eurheartj/ehx511. PubMed DOI

Lahnwong S, Chattipakorn SC, Chattipakorn N. Potential mechanisms responsible for cardioprotective effects of sodium–glucose co-transporter 2 inhibitors. Cardiovasc Diabetol. 2018;17:101. doi: 10.1186/s12933-018-0745-5. PubMed DOI PMC

Irace C, et al. Empagliflozin influences blood viscosity and wall shear stress in subjects with type 2 diabetes mellitus compared with incretin-based therapy. Cardiovasc Diabetol. 2018;17:52. doi: 10.1186/s12933-018-0695-y. PubMed DOI PMC

Home P. Cardiovascular outcome trials of glucose-lowering medications: an update. Diabetologia. 2019;62:357–369. doi: 10.1007/s00125-018-4801-1. PubMed DOI

Gallwitz B. The cardiovascular benefits associated with the use of sodium-glucose cotransporter 2 inhibitors—real-world data. Eur Endocrinol. 2018;14:17–23. doi: 10.17925/EE.2018.14.1.17. PubMed DOI PMC

Patorno E, et al. Empagliflozin and the risk of heart failure hospitalization in routine clinical care: a first analysis from the empagliflozin comparative effectiveness and safety (EMPRISE) Study. Circulation. 2019 doi: 10.1161/CIRCULATIONAHA.118.039177. PubMed DOI PMC

Raschi E, Poluzzi E, Fadini GP, Marchesini G, De Ponti F. Observational research on sodium glucose co-transporter-2 inhibitors: a real breakthrough? Diabetes Obes Metab. 2018;20:2711–2723. doi: 10.1111/dom.13468. PubMed DOI PMC

De Nardi M, French E, Jones JB, McCauley J. Medical spending of the US elderly: medical spending of the US elderly. Fisc Stud. 2016;37:717–747. doi: 10.1111/j.1475-5890.2016.12106. PubMed DOI PMC

Suissa S. Lower risk of death with SGLT2 inhibitors in observational studies: real or bias? Diabetes Care. 2018;41:6–10. doi: 10.2337/dc17-1223. PubMed DOI

Suissa S. Response to comment on Suissa. Lower risk of death with SGLT2 inhibitors in observational studies: real or bias? Diabetes Care 2018;41:6–10. Diabetes Care. 2018;41:e109–e110. doi: 10.2337/dci18-0015. PubMed DOI

Thuresson M, et al. Comment on Suissa. Lower risk of death with SGLT2 inhibitors in observational studies: real or bias? Diabetes Care 2018;41:6–10. Diabetes Care. 2018;41:e106–e108. doi: 10.2337/dc18-0338. PubMed DOI

Patorno E, et al. Claims-based studies of oral glucose-lowering medications can achieve balance in critical clinical variables only observed in electronic health records. Diabetes Obes Metab. 2018;20:974–984. doi: 10.1111/dom.13184. PubMed DOI PMC

Perkovic V, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019 doi: 10.1056/NEJMoa1811744. PubMed DOI

Kosiborod M, et al. Lower risk of heart failure and death in patients initiated on sodium–glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL study (comparative effectiveness of cardiovascular outcomes in new users of sodium–glucose cotransporter-2 inhibitors) Circulation. 2017;136:249–259. doi: 10.1161/CIRCULATIONAHA.117.029190. PubMed DOI PMC

Kosiborod M, et al. Cardiovascular events associated with SGLT-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL 2 study. J Am Coll Cardiol. 2018;71:2628–2639. doi: 10.1016/j.jacc.2018.03.009. PubMed DOI

Birkeland KI, et al. Cardiovascular mortality and morbidity in patients with type 2 diabetes following initiation of sodium-glucose co-transporter-2 inhibitors versus other glucose-lowering drugs (CVD-REAL Nordic): a multinational observational analysis. Lancet Diabetes Endocrinol. 2017;5:709–717. doi: 10.1016/S2213-8587(17)30258-9. PubMed DOI

Rocha BML, et al. Empagliflozin targeting the real-world heart failure population. J Card Fail. 2019;25:218–219. doi: 10.1016/j.cardfail.2019.02.002. PubMed DOI

Sano M. A new class of drugs for heart failure: SGLT2 inhibitors reduce sympathetic overactivity. J Cardiol. 2018;71:471–476. doi: 10.1016/j.jjcc.2017.12.004. PubMed DOI

Zelniker TA, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019;393:31–39. doi: 10.1016/S0140-6736(18)32590-X. PubMed DOI

Furtado RHM, et al. Dapagliflozin and cardiovascular outcomes in patients with type 2 diabetes and prior myocardial infarction: a sub-analysis from DECLARE TIMI-58 trial. Circulation. 2019 doi: 10.1161/CIRCULATIONAHA.119.039996. PubMed DOI

Zhou Z, et al. Canagliflozin and stroke in type 2 diabetes mellitus: results from the randomized CANVAS program trials. Stroke. 2019;50:396–404. doi: 10.1161/STROKEAHA.118.023009. PubMed DOI PMC

Thomas MC, Cooper ME, Zimmet P. Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease. Nat Rev Nephrol. 2016;12:73–81. doi: 10.1038/nrneph.2015.173. PubMed DOI

Thomas MC, Groop P-H. Diabetes: assessing renal risk in patients with type 2 diabetes. Nat Rev Nephrol. 2013;9:559–560. doi: 10.1038/nrneph.2013.181. PubMed DOI

Wanner C, et al. Empagliflozin and clinical outcomes in patients with type 2 diabetes mellitus, established cardiovascular disease, and chronic kidney disease. Circulation. 2018;137:119–129. doi: 10.1161/CIRCULATIONAHA.117.028268. PubMed DOI

Neuen BL, et al. Cardiovascular and renal outcomes with canagliflozin according to baseline kidney function. Circulation. 2018;138:1537–1550. doi: 10.1161/CIRCULATIONAHA.118.035901. PubMed DOI PMC

Levine MJ. Empagliflozin for type 2 diabetes mellitus: an overview of phase 3 clinical trials. Curr Diabetes Rev. 2017;13:405–423. doi: 10.2174/1573399812666160613113556. PubMed DOI PMC

Kosiborod M, et al. Rates of myocardial infarction and stroke in patients initiating treatment with SGLT2-inhibitors versus other glucose-lowering agents in real-world clinical practice: results from the CVD-REAL study. Diabetes Obes Metab. 2018;20:1983–1987. doi: 10.1111/dom.13299. PubMed DOI PMC

Rosenstock J, Ferrannini E. Euglycemic diabetic ketoacidosis: a predictable, detectable, and preventable safety concern with SGLT2 inhibitors. Diabetes Care. 2015;38:1638–1642. doi: 10.2337/dc15-1380. PubMed DOI

Dunlay SM, et al. Lifetime costs of medical care after heart failure diagnosis. Circ Cardiovasc Qual Outcomes. 2011;4:68–75. doi: 10.1161/CIRCOUTCOMES.110.957225. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...