Health Benefits of β-Hydroxy-β-Methylbutyrate (HMB) Supplementation in Addition to Physical Exercise in Older Adults: A Systematic Review with Meta-Analysis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, metaanalýza, systematický přehled
Grantová podpora
20872/PI/18
Fundación Séneca
PRIMUS/19/HUM/012
Univerzita Karlova v Praze
project Q41
Univerzita Karlova v Praze
PubMed
31484462
PubMed Central
PMC6769498
DOI
10.3390/nu11092082
PII: nu11092082
Knihovny.cz E-zdroje
- Klíčová slova
- elderly, leucine, neuromuscular function, nutrition, resistance training, sarcopenia,
- MeSH
- cvičení fyziologie MeSH
- lidé MeSH
- potravní doplňky * MeSH
- stárnutí * MeSH
- valeráty aplikace a dávkování farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- systematický přehled MeSH
- Názvy látek
- beta-hydroxyisovaleric acid MeSH Prohlížeč
- valeráty MeSH
Both regular exercise training and beta-hydroxy-beta-methylbutyrate (HMB) supplementation are shown as effective treatments to delay or reverse frailty and reduce cognitive impairment in older people. However, there is very little evidence on the true benefits of combining both strategies. The aim of this meta-analysis was to quantify the effects of exercise in addition to HMB supplementation, on physical and cognitive health in older adults. Data from 10 randomized controlled trials (RCTs) investigating the effect of HMB supplementation and physical function in adults aged 50 years or older were analyzed, involving 384 participants. Results showed that HMB supplementation in addition to physical exercise has no or fairly low impact in improving body composition, muscle strength, or physical performance in adults aged 50 to 80 years, compared to exercise alone. There is a gap of knowledge on the beneficial effects of HMB combined with exercise to preserve cognitive functions in aging and age-related neurodegenerative diseases. Future RCTs are needed to refine treatment choices combining HMB and exercises for older people in particular populations, ages, and health status. Specifically, interventions in older adults aged 80 years or older, with cognitive impairment, frailty, or limited mobility are required.
Zobrazit více v PubMed
Travers J., Romero-Ortuno R., Bailey J., Cooney M.T. Delaying and reversing frailty: A systematic review of primary care interventions. Br. J. Gen. Pract. 2019;69:e61–e69. doi: 10.3399/bjgp18X700241. PubMed DOI PMC
Lazarus N.R., Izquierdo M., Higginson I.J., Harridge S.D.R. Exercise Deficiency Diseases of Ageing: The Primacy of Exercise and Muscle Strengthening as First-Line Therapeutic Agents to Combat Frailty. J. Am. Med. Dir. Assoc. 2018;19:741–743. doi: 10.1016/j.jamda.2018.04.014. PubMed DOI
Sáez de Asteasu M.L., Martínez-Velilla N., Zambom-Ferraresi F., Casas-Herrero Á., Izquierdo M. Role of physical exercise on cognitive function in healthy older adults: A systematic review of randomized clinical trials. Ageing Res. Rev. 2017;37:117–134. doi: 10.1016/j.arr.2017.05.007. PubMed DOI
Martínez-Velilla N., Casas-Herrero A., Zambom-Ferraresi F., Sáez de Asteasu M.L., Lucia A., Galbete A., García-Baztán A., Alonso-Renedo J., González-Glaría B., Gonzalo-Lázaro M., et al. Effect of Exercise Intervention on Functional Decline in Very Elderly Patients During Acute Hospitalization. JAMA Intern. Med. 2019;179:28. doi: 10.1001/jamainternmed.2018.4869. PubMed DOI PMC
Tarazona-Santabalbina F.J., Gómez-Cabrera M.C., Pérez-Ros P., Martínez-Arnau F.M., Cabo H., Tsaparas K., Salvador-Pascual A., Rodriguez-Mañas L., Viña J. A Multicomponent Exercise Intervention that Reverses Frailty and Improves Cognition, Emotion, and Social Networking in the Community-Dwelling Frail Elderly: A Randomized Clinical Trial. J. Am. Med. Dir. Assoc. 2016;17:426–433. doi: 10.1016/j.jamda.2016.01.019. PubMed DOI
García-Molina R., Ruíz-Grao M.C., Noguerón-García A., Martínez-Reig M., Esbrí-Víctor M., Izquierdo M., Abizanda P. Benefits of a multicomponent Falls Unit-based exercise program in older adults with falls in real life. Exp. Gerontol. 2018;110:79–85. doi: 10.1016/j.exger.2018.05.013. PubMed DOI
Cadore E.L., Casas-Herrero A., Zambom-Ferraresi F., Idoate F., Millor N., Gómez M., Rodriguez-Mañas L., Izquierdo M. Multicomponent exercises including muscle power training enhance muscle mass, power output, and functional outcomes in institutionalized frail nonagenarians. Age. 2014;36:773–785. doi: 10.1007/s11357-013-9586-z. PubMed DOI PMC
Sáez de Asteasu M.L., Martínez-Velilla N., Zambom-Ferraresi F., Casas-Herrero Á., Cadore E.L., Galbete A., Izquierdo M. Assessing the impact of physical exercise on cognitive function in older medical patients during acute hospitalization: Secondary analysis of a randomized trial. PLoS Med. 2019;16:e1002852. doi: 10.1371/journal.pmed.1002852. PubMed DOI PMC
Izquierdo M., Rodriguez-Mañas L., Casas-Herrero A., Martinez-Velilla N., Cadore E.L., Sinclair A.J. Is It Ethical Not to Precribe Physical Activity for the Elderly Frail? J. Am. Med. Dir. Assoc. 2016;17:779–781. doi: 10.1016/j.jamda.2016.06.015. PubMed DOI
De Souto Barreto P., Demougeot L., Vellas B., Rolland Y. How much exercise are older adults living in nursing homes doing in daily life? A cross-sectional study. J. Sports Sci. 2015;33:116–124. doi: 10.1080/02640414.2014.928828. PubMed DOI
Gutiérrez-Valencia M., Izquierdo M., Lacalle-Fabo E., Marín-Epelde I., Ramón-Espinoza M.F., Domene-Domene T., Casas-Herrero Á., Galbete A., Martínez-Velilla N. Relationship between frailty, polypharmacy, and underprescription in older adults living in nursing homes. Eur. J. Clin. Pharmacol. 2018;74:961–970. doi: 10.1007/s00228-018-2452-2. PubMed DOI
Casas-Herrero A., Cadore E.L., Zambom-Ferraresi F., Idoate F., Millor N., Martínez-Ramirez A., Gómez M., Rodriguez-Mañas L., Marcellán T., de Gordoa A.R., et al. Functional Capacity, Muscle Fat Infiltration, Power Output, and Cognitive Impairment in Institutionalized Frail Oldest Old. Rejuvenation Res. 2013;16:396–403. doi: 10.1089/rej.2013.1438. PubMed DOI PMC
Cadore E.L., Sáez de Asteasu M.L., Izquierdo M. Multicomponent exercise and the hallmarks of frailty: Considerations on cognitive impairment and acute hospitalization. Exp. Gerontol. 2019;122:10–14. doi: 10.1016/j.exger.2019.04.007. PubMed DOI
Hörder H., Johansson L., Guo X., Grimby G., Kern S., Östling S., Skoog I. Midlife cardiovascular fitness and dementia: A 44-year longitudinal population study in women. Neurology. 2018;90:e1298–e1305. doi: 10.1212/WNL.0000000000005290. PubMed DOI PMC
Kossioni A.E. The Association of Poor Oral Health Parameters with Malnutrition in Older Adults: A Review Considering the Potential Implications for Cognitive Impairment. Nutrients. 2018;10:1709. doi: 10.3390/nu10111709. PubMed DOI PMC
Crichton M., Craven D., Mackay H., Marx W., de van der Schueren M., Marshall S. A systematic review, meta-analysis and meta-regression of the prevalence of protein-energy malnutrition: Associations with geographical region and sex. Age Ageing. 2018;48:38–48. doi: 10.1093/ageing/afy144. PubMed DOI
Landi F., Calvani R., Tosato M., Martone A.M., Ortolani E., Savera G., D’Angelo E., Sisto A., Marzetti E. Protein intake and muscle health in old age: From biological plausibility to clinical evidence. Nutrients. 2016;8:295. doi: 10.3390/nu8050295. PubMed DOI PMC
Doorduijn A.S., Visser M., van de Rest O., Kester M.I., de Leeuw F.A., Boesveldt S., Fieldhouse J.L.P., van den Heuvel E.G.H.M., Teunissen C.E., Scheltens P., et al. Associations of AD Biomarkers and Cognitive Performance with Nutritional Status: The NUDAD Project. Nutrients. 2019;11:1161. doi: 10.3390/nu11051161. PubMed DOI PMC
Meijers J.M.M., Halfens R.J.G., Wilson L., Schols J.M.G.A. Estimating the costs associated with malnutrition in Dutch nursing homes. Clin. Nutr. 2012;31:65–68. doi: 10.1016/j.clnu.2011.08.009. PubMed DOI
Holeček M. Beta-hydroxy-beta-methylbutyrate supplementation and skeletal muscle in healthy and muscle-wasting conditions. J. Cachexia Sarcopenia Muscle. 2017;8:529–541. doi: 10.1002/jcsm.12208. PubMed DOI PMC
Nissen S.L., Abumrad N.N. Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB) J. Nutr. Biochem. 1997;8:300–311. doi: 10.1016/S0955-2863(97)00048-X. DOI
Holecek M., Muthny T., Kovarik M., Sispera L. Effect of beta-hydroxy-beta-methylbutyrate (HMB) on protein metabolism in whole body and in selected tissues. Food Chem. Toxicol. 2009;47:255–259. doi: 10.1016/j.fct.2008.11.021. PubMed DOI
Wilkinson D.J., Hossain T., Hill D.S., Phillips B.E., Crossland H., Williams J., Loughna P., Churchward-Venne T.A., Breen L., Phillips S.M., et al. Effects of leucine and its metabolite β-hydroxy-β-methylbutyrate on human skeletal muscle protein metabolism. J. Physiol. 2013;591:2911–2923. doi: 10.1113/jphysiol.2013.253203. PubMed DOI PMC
Wu H., Xia Y., Jiang J., Du H., Guo X., Liu X., Li C., Huang G., Niu K. Effect of beta-hydroxy-beta-methylbutyrate supplementation on muscle loss in older adults: A systematic review and meta-analysis. Arch. Gerontol. Geriatr. 2015;61:168–175. doi: 10.1016/j.archger.2015.06.020. PubMed DOI
Bear D.E., Langan A., Dimidi E., Wandrag L., Harridge S.D.R., Hart N., Connolly B., Whelan K. Beta-hydroxy-beta-methylbutyrate and its impact on skeletal muscle mass and physical function in clinical practice: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2019;109:1119–1132. doi: 10.1093/ajcn/nqy373. PubMed DOI
Munroe M., Mahmassani Z.S., Dvoretskiy S., Reid J.J., Miller B.F., Hamilton K., Rhodes J.S., Boppart M.D. Cognitive function is preserved in aged mice following long-term β-hydroxy-β-methylbutyrate supplementation. Nutr. Neurosci. 2018:1–13. doi: 10.1080/1028415X.2018.1483101. PubMed DOI
Hankosky E.R., Sherrill L.K., Ruvola L.A., Haake R.M., Kim T., Hammerslag L.R., Kougias D.G., Juraska J.M., Gulley J.M. Effects of β-hydroxy-β-methyl butyrate on working memory and cognitive flexibility in an animal model of aging. Nutr. Neurosci. 2017;20:379–387. doi: 10.1080/1028415X.2016.1145376. PubMed DOI
Kougias D.G., Das T., Perez A.B., Pereira S.L. A role for nutritional intervention in addressing the aging neuromuscular junction. Nutr. Res. 2018;53:1–14. doi: 10.1016/j.nutres.2018.02.006. PubMed DOI
Landi F., Calvani R., Picca A., Marzetti E. Beta-hydroxy-beta-methylbutyrate and sarcopenia: From biological plausibility to clinical evidence. Curr. Opin. Clin. Nutr. Metab. Care. 2019;22:37–43. doi: 10.1097/MCO.0000000000000524. PubMed DOI
Shreeram S., Ramesh S., Puthan J.K., Balakrishnan G., Subramanian R., Reddy M.T., Pereira S.L. Age associated decline in the conversion of leucine to β-hydroxy-β-methylbutyrate in rats. Exp. Gerontol. 2016;80:6–11. doi: 10.1016/j.exger.2016.03.021. PubMed DOI
Moher D., Liberati A., Tetzlaff J., Altman D.G., Group T.P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009;6:e1000097. doi: 10.1371/journal.pmed.1000097. PubMed DOI PMC
Centre for Reviews and Dissemination . Systematic Reviews: CRD’s Guidance for Undertaking Systematic Reviews in Health Care. University of York; York, UK: 2009.
Higgins J.P.T., Sterne J.A.C., Savovic J., Page M.J., Hróbjartsson A., Boutron I., Reeves B., Eldridge S. A revised tool for assessing risk of bias in randomized trials. Cochrane Database Syst. Rev. 2016;10:29–31. doi: 10.1002/14651858.CD201601. DOI
Tipton E. Small sample adjustments for robust variance estimation with meta-regression. Psychol. Methods. 2015;20:375. doi: 10.1037/met0000011. PubMed DOI
Hedges L.V., Tipton E., Johnson M.C. Robust variance estimation in meta-regression with dependent effect size estimates. Res. Synth. Methods. 2010;1:39–65. doi: 10.1002/jrsm.5. PubMed DOI
Olveira G., Olveira C., Doña E., Palenque F.J., Porras N., Dorado A., Godoy A.M., Rubio-Martínez E., Rojo-Martínez G., Martín-Valero R. Oral supplement enriched in HMB combined with pulmonary rehabilitation improves body composition and health related quality of life in patients with bronchiectasis (Prospective, Randomised Study) Clin. Nutr. 2016;35:1015–1022. doi: 10.1016/j.clnu.2015.10.001. PubMed DOI
Berton L., Bano G., Carraro S., Veronese N., Pizzato S., Bolzetta F., De Rui M., Valmorbida E., De Ronch I., Perissinotto E., et al. Effect of Oral Beta-hydroxy-Beta-methylbutyrate (HMB) Supplementation on Physical Performance in Healthy Old Women Over 65 Years: An Open Label Randomized Controlled Trial. PLoS ONE. 2015;10:e0141757. doi: 10.1371/journal.pone.0141757. PubMed DOI PMC
Din U.S.U., Brook M.S., Selby A., Quinlan J., Boereboom C., Abdullah H., Franchi M., Narici M.V., Phillips B.E., Williams J.W., et al. A double-blind placebo controlled trial into the impacts of HMB supplementation and exercise on free-living muscle protein synthesis, muscle mass and function, in older adults. Clin. Nutr. 2018 doi: 10.1016/j.clnu.2018.09.025. PubMed DOI PMC
Standley R.A., Distefano G., Pereira S.L., Tian M., Kelly O.J., Coen P.M., Deutz N.E.P., Wolfe R.R., Goodpaster B.H. Effects of β-hydroxy-β-methylbutyrate on skeletal muscle mitochondrial content and dynamics, and lipids after 10 days of bed rest in older adults. J. Appl. Physiol. 2017;123:1092–1100. doi: 10.1152/japplphysiol.00192.2017. PubMed DOI
Deutz N.E.P., Pereira S.L., Hays N.P., Oliver J.S., Edens N.K., Evans C.M., Wolfe R.R. Effect of β-hydroxy-β-methylbutyrate (HMB) on lean body mass during 10 days of bed rest in older adults. Clin. Nutr. 2013;32:704–712. doi: 10.1016/j.clnu.2013.02.011. PubMed DOI
Vukovich M.D., Stubbs N.B., Bohlken R.M. Body composition in 70-year-old adults responds to dietary beta-hydroxy-beta-methylbutyrate similarly to that of young adults. J. Nutr. 2001;131:2049–2052. doi: 10.1093/jn/131.7.2049. PubMed DOI
Stout J.R., Fukuda D.H., Kendall K.L., Smith-Ryan A.E., Moon J.R., Hoffman J.R. Beta-hydroxy-beta-methylbutyrate (HMB) supplementation and resistance exercise significantly reduce abdominal adiposity in healthy elderly men. Exp. Gerontol. 2015;64:33–34. doi: 10.1016/j.exger.2015.02.012. PubMed DOI
Stout J.R., Smith-Ryan A.E., Fukuda D.H., Kendall K.L., Moon J.R., Hoffman J.R., Wilson J.M., Oliver J.S., Mustad V.A. Effect of calcium β-hydroxy-β-methylbutyrate (CaHMB) with and without resistance training in men and women 65+ yrs: A randomized, double-blind pilot trial. Exp. Gerontol. 2013;48:1303–1310. doi: 10.1016/j.exger.2013.08.007. PubMed DOI
Malafarina V., Uriz-Otano F., Malafarina C., Martinez J.A., Zulet M.A. Effectiveness of nutritional supplementation on sarcopenia and recovery in hip fracture patients. A multi-centre randomized trial. Maturitas. 2017;101:42–50. doi: 10.1016/j.maturitas.2017.04.010. PubMed DOI
Nissen S., Sharp R.L., Panton L., Vukovich M., Trappe S., Fuller J.C. Beta-hydroxy-beta-methylbutyrate (HMB) supplementation in humans is safe and may decrease cardiovascular risk factors. J. Nutr. 2000;130:1937–1945. doi: 10.1093/jn/130.8.1937. PubMed DOI
Oktaviana J., Zanker J., Vogrin S., Duque G. The Effect of beta-hydroxy-beta-methylbutyrate (HMB) on Sarcopenia and Functional Frailty in Older Persons: A Systematic Review. J. Nutr. Heal. Aging. 2019;23:145–150. doi: 10.1007/s12603-018-1153-y. PubMed DOI
Sanz-Paris A., Camprubi-Robles M., Lopez-Pedrosa J.M., Pereira S.L., Rueda R., Ballesteros-Pomar M.D., Garcia Almeida J.M., Cruz-Jentoft A.J. Role of Oral Nutritional Supplements Enriched with B-hydroxy-B-Methylbutyrate in Maintaining Muscle Function and Improving Clinical Outcomes in Various Clinical Settings. J. Nutr. Heal. Aging. 2018;22:664–675. doi: 10.1007/s12603-018-0995-7. PubMed DOI PMC
Fragala M.S., Cadore E.L., Dorgo S., Izquierdo M., Kraemer W.J., Peterson M.D., Ryan E.D. Resistance Training for Older Adults. Position Statement from the National Strength and Conditioning Association. J. Strength Cond. Res. 2019;33:2019–2052. doi: 10.1519/JSC.0000000000003230. PubMed DOI
Lopez P., Pinto R.S., Radaelli R., Rech A., Grazioli R., Izquierdo M., Cadore E.L. Benefits of resistance training in physically frail elderly: A systematic review. Aging Clin. Exp. Res. 2018;30:889–899. doi: 10.1007/s40520-017-0863-z. PubMed DOI
Ekinci O., Yanik S., Terzioglu Bebitoglu B., Yilmaz Akyuz E., Dokuyucu A., Erdem S. Effect of Calcium beta-hydroxy-beta-methylbutyrate (CaHMB), Vitamin D, and Protein Supplementation on Postoperative Immobilization in Malnourished Older Adult Patients with Hip Fracture: A Randomized Controlled Study. Nutr. Clin. Pract. 2016;31:829–835. doi: 10.1177/0884533616629628. PubMed DOI
Yamamoto K., Nagatsuma Y., Fukuda Y., Hirao M., Nishikawa K., Miyamoto A., Ikeda M., Nakamori S., Sekimoto M., Fujitani K., et al. Effectiveness of a preoperative exercise and nutritional support program for elderly sarcopenic patients with gastric cancer. Gastric Cancer. 2017;20:913–918. doi: 10.1007/s10120-016-0683-4. PubMed DOI
Eley H.L., Russell S.T., Baxter J.H., Mukerji P., Tisdale M.J. Signaling pathways initiated by β-hydroxy-β-methylbutyrate to attenuate the depression of protein synthesis in skeletal muscle in response to cachectic stimuli. Am. J. Physiol. Metab. 2007;293:E923–E931. doi: 10.1152/ajpendo.00314.2007. PubMed DOI
Eley H.L., Russell S.T., Tisdale M.J. Attenuation of depression of muscle protein synthesis induced by lipopolysaccharide, tumor necrosis factor, and angiotensin II by β-hydroxy-β-methylbutyrate. Am. J. Physiol. Metab. 2008;295:E1409–E1416. doi: 10.1152/ajpendo.90530.2008. PubMed DOI
Sánchez-Rodríguez D., Marco E., Ronquillo-Moreno N., Miralles R., Mojal S., Vázquez-Ibar O., Escalada F., Muniesa J.M. The PSSMAR study. Postacute sarcopenia: Supplementation with β-hydroxy-β-methylbutyrate after resistance training: Study protocol of a randomized, double-blind controlled trial. Maturitas. 2016;94:117–124. doi: 10.1016/j.maturitas.2016.08.019. PubMed DOI
Courel-Ibáñez J., Pallarés J.G. Effects of β-hydroxy-β-methylbutyrate (HMB) supplementation in addition to multicomponent exercise in adults older than 70 years living in nursing homes, a cluster randomized placebo-controlled trial: The HEAL study protocol. BMC Geriatr. 2019;19:188. doi: 10.1186/s12877-019-1200-5. PubMed DOI PMC
Osuka Y., Kojima N., Wakaba K., Miyauchi D., Tanaka K., Kim H. Effects of resistance training and/or beta-hydroxy-beta-methylbutyrate supplementation on muscle mass, muscle strength and physical performance in older women with reduced muscle mass: Protocol for a randomised, double-blind, placebo-controlled trial. BMJ Open. 2019;9:e025723. doi: 10.1136/bmjopen-2018-025723. PubMed DOI PMC
Santos-Fandila A., Zafra-Gómez A., Barranco A., Navalón A., Rueda R., Ramírez M. Quantitative determination of β-hydroxy-β-methylbutyrate and leucine in culture media and microdialysates from rat brain by UHPLC-tandem mass spectrometry. Anal. Bioanal. Chem. 2014;406:2863–2872. doi: 10.1007/s00216-014-7694-y. PubMed DOI
Kougias D.G., Hankosky E.R., Gulley J.M., Juraska J.M. Beta-hydroxy-beta-methylbutyrate (HMB) ameliorates age-related deficits in water maze performance, especially in male rats. Physiol. Behav. 2017;170:93–99. doi: 10.1016/j.physbeh.2016.12.025. PubMed DOI
Kougias D.G., Nolan S.O., Koss W.A., Kim T., Hankosky E.R., Gulley J.M., Juraska J.M. Beta-hydroxy-beta-methylbutyrate ameliorates aging effects in the dendritic tree of pyramidal neurons in the medial prefrontal cortex of both male and female rats. Neurobiol. Aging. 2016;40:78–85. doi: 10.1016/j.neurobiolaging.2016.01.004. PubMed DOI
Salto R., Vílchez J.D., Girón M.D., Cabrera E., Campos N., Manzano M., Rueda R., López-Pedrosa J.M. β-hydroxy-β-methylbutyrate (HMB) Promotes Neurite Outgrowth in Neuro2a Cells. PLoS ONE. 2015;10:e0135614. doi: 10.1371/journal.pone.0135614. PubMed DOI PMC