The association between premorbid beta blocker exposure and mortality in sepsis-a systematic review
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, systematický přehled
Grantová podpora
-
Nepean Institute of Critical Care Education and Research (NICCER)
project number Q39
Charles University Research Fund
CZ.02.1.01/0.0/.0/16_019/0000787 "Fighting Infectious Diseases,"
Ministry of Youth and Education Services of the Czech Republic
PubMed
31484576
PubMed Central
PMC6727531
DOI
10.1186/s13054-019-2562-y
PII: 10.1186/s13054-019-2562-y
Knihovny.cz E-zdroje
- Klíčová slova
- Beta blockers, Mortality, Sepsis, Systematic review,
- MeSH
- beta blokátory škodlivé účinky farmakologie terapeutické užití MeSH
- hypertenze farmakoterapie mortalita MeSH
- lidé MeSH
- retrospektivní studie MeSH
- sepse mortalita patofyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- systematický přehled MeSH
- Názvy látek
- beta blokátory MeSH
BACKGROUND: The effect of premorbid β-blocker exposure on clinical outcomes in patients with sepsis is not well characterized. We aimed to examine the association between premorbid β-blocker exposure and mortality in sepsis. METHODS: EMBase, MEDLINE, and Cochrane databases were searched for all studies of premorbid β-blocker and sepsis. The search was last updated on 22 June 2019. Two reviewers independently assessed, selected, and abstracted data from studies reporting chronic β-blocker use prior to sepsis and mortality. Main data extracted were premorbid β-blocker exposure, mortality, study design, and patient data. Two reviewers independently assessed the risk of bias and quality of evidence. RESULTS: In total, nine studies comprising 56,414 patients with sepsis including 6576 patients with premorbid exposure to β-blockers were eligible. For the primary outcome of mortality, two retrospective studies reported adjusted odds ratios showing a reduction in mortality with premorbid β-blocker exposure. One study showed that premorbid β-blocker exposure decreases mortality in patients with septic shock. Another study showed that continued β-blockade during sepsis is associated with decreased mortality. CONCLUSION: This systematic review suggests that β-blocker exposure prior to sepsis is associated with reduced mortality. There was insufficient data to conduct a bona fide meta-analysis. Whether the apparent reduction in mortality may be attributed to the mitigation of catecholamine excess is unclear. TRIAL REGISTRATION: PROSPERO, CRD42019130558 registered June 12, 2019.
Centre for Immunology and Allergy Research Westmead Millennium Institute Westmead Australia
Department of Intensive Care Medicine Nepean Hospital Penrith Australia
Nepean Clinical School Sydney Medical School University of Sydney Penrith Australia
Zobrazit více v PubMed
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3) JAMA. 2016;315(8):801. doi: 10.1001/jama.2016.0287. PubMed DOI PMC
Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management. BMJ [Internet. 2016:i1585 [cited 2019 Mar 24]. Available from: http://www.bmj.com/lookup/doi/10.1136/bmj.i1585. PubMed DOI
Lesur O, Delile E, Asfar P, Radermacher P. Hemodynamic support in the early phase of septic shock: a review of challenges and unanswered questions. Ann Intensive Care. 2018;8(1) [cited 2019 Mar 24]. Available from: https://annalsofintensivecare.springeropen.com/articles/10.1186/s13613-018-0449-8. PubMed DOI PMC
Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43(3):304–377. doi: 10.1007/s00134-017-4683-6. PubMed DOI
Suzuki T, Suzuki Y, Okuda J, Kurazumi T, Suhara T, Ueda T, et al. Sepsis-induced cardiac dysfunction and β-adrenergic blockade therapy for sepsis. J Intensive Care. 2017;5(1) [cited 2019 Mar 24]. Available from: http://jintensivecare.biomedcentral.com/articles/10.1186/s40560-017-0215-2. PubMed DOI PMC
Singer M. Catecholamine treatment for shock—equally good or bad? Lancet. 2007;370(9588):636–637. doi: 10.1016/S0140-6736(07)61317-8. PubMed DOI
de Montmollin E, Aboab J, Mansart A, Annane D. Bench-to-bedside review: β-adrenergic modulation in sepsis. Crit Care. 2009;13(5):230. doi: 10.1186/cc8026. PubMed DOI PMC
Morelli A, Ertmer C, Westphal M, Rehberg S, Kampmeier T, Ligges S, et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA. 2013;310(16):1683. doi: 10.1001/jama.2013.278477. PubMed DOI
Morelli A, Donati A, Ertmer C, Rehberg S, Kampmeier T, Orecchioni A, et al. Microvascular effects of heart rate control with esmolol in patients with septic shock: a pilot study*. Crit Care Med. 2013;41(9):2162–2168. doi: 10.1097/CCM.0b013e31828a678d. PubMed DOI
Macchia A, Romero M, Comignani PD, Mariani J, D’Ettorre A, Prini N, et al. Previous prescription of β-blockers is associated with reduced mortality among patients hospitalized in intensive care units for sepsis*. Crit Care Med. 2012;40(10):2768–2772. doi: 10.1097/CCM.0b013e31825b9509. PubMed DOI
Singer KE, Collins CE, Flahive JM, Wyman AS, Ayturk MD, Santry HP. Outpatient beta-blockers and survival from sepsis: results from a national cohort of Medicare beneficiaries. Am J Surg. 2017;214(4):577–582. doi: 10.1016/j.amjsurg.2017.06.007. PubMed DOI PMC
van Loon LM, van der Hoeven JG, Lemson J. Hemodynamic response to β-blockers in severe sepsis and septic shock: a review of current literature. J Crit Care. 2019;50:138–143. doi: 10.1016/j.jcrc.2018.12.003. PubMed DOI
Chacko C, Gopal S. Systematic review of use of β-blockers in sepsis. J Anaesthesiol Clin Pharmacol. 2015;31(4):460. doi: 10.4103/0970-9185.169063. PubMed DOI PMC
Sanfilippo F, Santonocito C, Morelli A, Foex P. Beta-blocker use in severe sepsis and septic shock: a systematic review. Curr Med Res Opin. 2015;31(10):1817–1825. doi: 10.1185/03007995.2015.1062357. PubMed DOI
McLean AS, Taccone FS, Vieillard-Baron A. Beta-blockers in septic shock to optimize hemodynamics? No. Intensive Care Med. 2016;42(10):1610–1612. doi: 10.1007/s00134-016-4407-3. PubMed DOI
Stroup DF. Meta-analysis of observational studies in epidemiology: a proposal for reporting. JAMA. 2000;283(15):2008. doi: 10.1001/jama.283.15.2008. PubMed DOI
Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6(7):e1000100. doi: 10.1371/journal.pmed.1000100. PubMed DOI PMC
Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016:i4919 [cited 2018 Jul 30]. Available from: http://www.bmj.com/lookup/doi/10.1136/bmj.i4919. PubMed DOI PMC
Park S, Beretvas SN. Using total sample size weights in meta-analysis of log-odds ratios. J Exp Educ. 2018;1–15. [cited 2019 Mar 25]. Available from: https://www.tandfonline.com/doi/full/10.1080/00220973.2018.1451295 DOI
Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–1558. doi: 10.1002/sim.1186. PubMed DOI
Contenti J, Occelli C, Corraze H, Lemoël F, Levraut J. Long-term β-blocker therapy decreases blood lactate concentration in severely septic patients*. Crit Care Med. 2015;43(12):2616–2622. doi: 10.1097/CCM.0000000000001308. PubMed DOI
Alsolamy S, Ghamdi G, Alswaidan L, Alharbi S, Alenezi F, López-Rodríguez M, et al. 36th International Symposium on Intensive Care and Emergency Medicine: Brussels, Belgium. 15–18 March 2016. Crit Care. 2016;20(S2) [cited 2019 Mar 17]. Available from: http://ccforum.biomedcentral.com/articles/10.1186/s13054-016-1208-6. DOI
Charles DR, Jean-Francois L, Matthieu J, Charpentier J, Cariou A, Chiche J-D, et al. Proceedings of Réanimation 2018, the French Intensive Care Society International Congress. Ann Intensive Care. 2018;8(S1) [cited 2019 Mar 17]. Available from: https://annalsofintensivecare.springeropen.com/articles/10.1186/s13613-017-0345-7. DOI
Al-Qadi MO, O’Horo JC, Thakur L, Kaur S, Berrios RAS, Caples SM, et al. American Journal of Respiratory and Critical Care Medicine. San Diego: Conference: Ameriacn Thoracic Society International Conference, ATS 2014; 2014. Long-term use of beta blockers is protective in severe sepsis and septic shock; p. 189.
Sharma A, Vashisht R, Bauer S, Hanane T. Effect of preadmission beta-blocker use on outcomes of patients admitted with septic shock. United States: Critical Care Medicine; 2016. p. 413.
Fuchs C, Wauschkuhn S, Scheer C, Vollmer M, Meissner K, Kuhn S-O, et al. Continuing chronic beta-blockade in the acute phase of severe sepsis and septic shock is associated with decreased mortality rates up to 90 days. Br J Anaesth. 2017;119(4):616–625. doi: 10.1093/bja/aex231. PubMed DOI
Hsieh M-S, How C-K, Hsieh VC-R, Chen P-C. Preadmission antihypertensive drug use and sepsis outcome: impact of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs). Shock. 2019;1 [cited 2019 Jun 22]. Available from: http://Insights.ovid.com/crossref?an=00024382-900000000-97629. PubMed
Sanfilippo F, Corredor C, Fletcher N, Landesberg G, Benedetto U, Foex P, et al. Diastolic dysfunction and mortality in septic patients: a systematic review and meta-analysis. Intensive Care Med. 2015;41(6):1004–1013. doi: 10.1007/s00134-015-3748-7. PubMed DOI
Sanfilippo F, Corredor C, Arcadipane A, Landesberg G, Vieillard-Baron A, Cecconi M, et al. Tissue Doppler assessment of diastolic function and relationship with mortality in critically ill septic patients: a systematic review and meta-analysis. Br J Anaesth. 2017;119(4):583–594. doi: 10.1093/bja/aex254. PubMed DOI
Kimmoun A, Louis H, Al Kattani N, Delemazure J, Dessales N, Wei C, et al. β1-adrenergic inhibition improves cardiac and vascular function in experimental septic shock*. Crit Care Med. 2015;43(9):e332–e340. doi: 10.1097/CCM.0000000000001078. PubMed DOI
Kohoutova M, Horak J, Jarkovska D, Martinkova V, Tegl V, Nalos L, et al. Vagus nerve stimulation attenuates multiple organ dysfunction in resuscitated porcine progressive sepsis. Crit Care Med. 2019;1 [cited 2019 Apr 19]. Available from: http://Insights.ovid.com/crossref?an=00003246-900000000-95985. PubMed
Chioléro R, Revelly JP, Tappy L. Energy metabolism in sepsis and injury. Nutr Burbank Los Angel Cty Calif. 1997;13(9 Suppl):45S–51S. doi: 10.1016/S0899-9007(97)00205-0. PubMed DOI
Herndon DN, Hart DW, Wolf SE, Chinkes DL, Wolfe RR. Reversal of catabolism by beta-blockade after severe burns. N Engl J Med. 2001;345(17):1223–1229. doi: 10.1056/NEJMoa010342. PubMed DOI
Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. The sympathetic nerve--an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev. 2000;52(4):595–638. PubMed
Shaw SM, Coppinger T, Waywell C, Dunne L, Archer LD, Critchley WR, et al. The effect of beta-blockers on the adaptive immune system in chronic heart failure. Cardiovasc Ther. 2009;27(3):181–186. doi: 10.1111/j.1755-5922.2009.00089.x. PubMed DOI
Estrada LD, Ağaç D, Farrar JD. Sympathetic neural signaling via the β2-adrenergic receptor suppresses T-cell receptor-mediated human and mouse CD8 + T-cell effector function. Eur J Immunol. 2016;46(8):1948–1958. doi: 10.1002/eji.201646395. PubMed DOI PMC
Schouten M, Wiersinga WJ, Levi M, van der Poll T. Inflammation, endothelium, and coagulation in sepsis. J Leukoc Biol. 2008;83(3):536–545. doi: 10.1189/jlb.0607373. PubMed DOI
Hjemdahl P, Larsson PT, Wallén NH. Effects of stress and beta-blockade on platelet function. Circulation. 1991;84(6 Suppl):VI44–VI61. PubMed
Xu L, Yu W-K, Lin Z-L, Tan S-J, Bai X-W, Ding K, et al. Chemical sympathectomy attenuates inflammation, glycocalyx shedding and coagulation disorders in rats with acute traumatic coagulopathy. Blood Coagul Fibrinolysis. 2015;26(2):152–160. doi: 10.1097/MBC.0000000000000211. PubMed DOI
Johansson P, Stensballe J, Ostrowski S. Shock induced endotheliopathy (SHINE) in acute critical illness - a unifying pathophysiologic mechanism. Crit Care. 2017;21(1):25. doi: 10.1186/s13054-017-1605-5. PubMed DOI PMC