Association genetics of bunch weight and its component traits in East African highland banana (Musa spp. AAA group)

. 2019 Dec ; 132 (12) : 3295-3308. [epub] 20190916

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31529270

Grantová podpora
OPP1093845 Bill & Melinda Gates Foundation - United States
CZ.02.1.01/0.0/0.0/16_019/0000827 ERDF

Odkazy

PubMed 31529270
PubMed Central PMC6820618
DOI 10.1007/s00122-019-03425-x
PII: 10.1007/s00122-019-03425-x
Knihovny.cz E-zdroje

The major quantitative trait loci associated with bunch weight and its component traits in the East African highland banana-breeding population are located on chromosome 3. Bunch weight increase is one of the major objectives of banana improvement programs, but little is known about the loci controlling bunch weight and its component traits. Here we report for the first time some genomic loci associated with bunch weight and its component traits in banana as revealed through a genome-wide association study. A banana-breeding population of 307 genotypes varying in ploidy was phenotyped in three locations under different environmental conditions, and data were collected on bunch weight, number of hands and fruits; fruit length and circumference; and diameter of both fruit and pulp for three crop cycles. The population was genotyped with genotyping by sequencing and 27,178 single nucleotide polymorphisms (SNPs) were generated. The association between SNPs and the best linear unbiased predictors of traits was performed with TASSEL v5 using a mixed linear model accounting for population structure and kinship. Using Bonferroni correction, false discovery rate, and long-range linkage disequilibrium (LD), 25 genomic loci were identified with significant SNPs and most were localized on chromosome 3. Most SNPs were located in genes encoding uncharacterized and hypothetical proteins, but some mapped to transcription factors and genes involved in cell cycle regulation. Inter-chromosomal LD of SNPs was present in the population, but none of the SNPs were significantly associated with the traits. The clustering of significant SNPs on chromosome 3 supported our hypothesis that fruit filling in this population was under control of a few quantitative trait loci with major effects.

Zobrazit více v PubMed

Ambawat S, Sharma P, Yadav NR, Yadav RC. MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants. 2013;19:307–321. PubMed PMC

Batte M, Swennen R, Uwimana B, Akech V, Brown A, Tumuhimbise R, Hovmalm HP, Geleta M, Ortiz R. Crossbreeding East African highland bananas: lessons learnt relevant to the botany of the crop after 21 years of genetic enhancement. Front Plant Sci. 2019;10:1–9. PubMed PMC

Begum H, Spindel JE, Lalusin A, Borromeo T, Gregorio G, Hernandez J, Virk P, Collard B, McCouch SR. Genome-wide association mapping for yield and other agronomic traits in an elite breeding population of tropical rice (Oryza sativa) PLoS ONE. 2015;10:e0119873. PubMed PMC

Borde V, Lichten M. A timeless but timely connection between replication and recombination. Cell. 2014;158:267–268. PubMed

Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017;169:1177–1186. PubMed PMC

Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23:2633–2635. PubMed

Brown A, Tumuhimbise R, Amah D, Uwimana B, Nyine M, Mduma H, Talengera D, Karamura D, Kuriba J, Swennen R. Banana and plantains (Musa spp.) In: Campos H, Caligari PDS, editors. Genetic improvement of tropical crops. New York: Springer; 2017. pp. 219–240.

Browning BL, Browning SR. Genotype imputation with millions of reference samples. Am J Hum Genet. 2016;98:116–126. PubMed PMC

Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, et al. The genetic architecture of maize flowering time. Science. 2009;9:714–718. PubMed

Cenci A, Hueber Y, Zorrilla-Fontanesi Y, van Wesemael J, Kissel E, Gislard M, Sardos J, Swennen R, Roux N, Carpentier SC, et al. Effect of paleopolyploidy and allopolyploidy on gene expression in banana. BMC Genom. 2019;20:1–12. PubMed PMC

Cheniclet C, Rong WY, Causse M, Frangne N, Bolling L, Carde J-P, Renaudin J-P. Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth. Plant Physiol. 2005;139:1984–1994. PubMed PMC

Cingolani P, Platts A, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6:80–92. PubMed PMC

Claussnitzer M, Dankel SN, Kim KH, Quon G, Meuleman W, Haugen C, Glunk V, Sousa IS, Beaudry JL, Puviindran V, et al. FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med. 2015;373:895–907. PubMed PMC

Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, et al. Protective effect of apolipoprotein-E type2 allele for late-onset Alzheimer-disease. Nat Genet. 1994;7:180–184. PubMed

D’Hont A, Denoeud F, Aury J-M, Baurens F-C, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M, et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature. 2012;488:213–219. PubMed

Dixon LE, Greenwood JR, Bencivenga S, Zhang P, Cockram J, Mellers G, Ramm K, Cavanagh C, Swain SM, Boden SA. TEOSINTE BRANCHED1 regulates inflorescence architecture and development in bread wheat (Triticum aestivum) Plant Cell. 2018;30:563–581. PubMed PMC

Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010;15:573–581. PubMed

Dupouy M, Baurens F-C, Derouault P, Hervouet C, Cardi C, Cruaud C, Istace B, Labadie K, Guiougou C, Toubi L, et al. Two large reciprocal translocations characterized in the disease resistance-rich burmannica genetic group of Musa acuminata. Ann Bot. 2019;XX:1–11. doi: 10.1093/aob/mcz078. PubMed DOI PMC

Dyer KA, Charlesworth B, Jaenik J. Chromosome-wide linkage disequilibrium as a consequence of meiotic drive. Proc Natl Acad Sci USA. 2007;104:1587–1592. PubMed PMC

Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. Arobust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE. 2011;6:e19379. PubMed PMC

Engelen E, Janssens RC, Yagita K, Smits VAJ, van der Horst GTJ, Tamanini F. Mammalian TIMELESS is involved in period determination and DNA damage-dependent phase advancing of the circadian clock. PLoS ONE. 2013;8:e56623. PubMed PMC

Farnir F, Coppieters W, Arranz JJ, Berzi P, Cambisano N, Grisart B, Karim L, Marcq F, Moreau L, Mni M, et al. Extensive genome-wide linkage disequilibrium in cattle. Genome Res. 2000;10:220–227. PubMed

Feller A, Machemer K, Braun EL, Grotewold E. Evolution and comparative analysis of MYB and bHLH plant transcription factors. Plant J. 2011;66:94–116. PubMed

Flint-Garcia SA, Thornsberry JM, Buckler ES., IV Structure of linkage disequilibrium in plants. Annu Rev Plant Biol. 2003;54:357–374. PubMed

Heslop-Harrison JS, Schwarzacher T. Domestication, genomics and the future for banana. Ann Bot. 2007;100:1073–1084. PubMed PMC

Huang X, Han B. Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol. 2014;65:531–551. PubMed

Jeffreys AJ, Kauppi L, Neumann R. Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat Genet. 2001;29:217–222. PubMed

Jordan KW, Wang S, He F, Chao S, Lun Y, Paux E, Sourdille P, Sherman J, Akhunova A, Blake NK, et al. The genetic architecture of genome-wide recombination rate variation in allopolyploid wheat revealed by nested association mapping. Plant J. 2018;95:1039–1054. PubMed PMC

Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, Lee JC, Schumm LP, Sharma Y, Anderson CA, et al. International IBD Genetics Consortium (IIBDGC) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491:119–124. PubMed PMC

Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E. Efficient control of population structure in model organism association mapping. Genetics. 2008;178:1709–1723. PubMed PMC

Kerem BS, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC. Identification of the cystic fibrosis gene: genetic analysis. Science. 1989;245:1073–1080. PubMed

Kitavi M, Downing T, Lorenzen J, Karamura D, Onyango M, Nyine M, Ferguson M, Spillane S. The triploid East African Highland Banana (EAHB) genepool is genetically uniform arising from a single ancestral clone that underwent population expansion by vegetative propagation. Theor Appl Genet. 2016;129:547–561. PubMed

Korte A, Farlow A. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods. 2013;9:1–9. PubMed PMC

Kulminski AM. Complex phenotypes and phenomenon of genome-wide inter-chromosomal linkage disequilibrium in the human genome. Exp Gerontol. 2011;46:979–986. PubMed

Labate JA, Lamkey KR, Lee M, Woodman W. Hardy-Weinberg and linkage equilibrium estimates in the BSSS and BSCB1 random mated populations. Maydica. 2000;45:243–255.

Lee SS, Cho HS, Yoon GM, Ahn J-W, Kim H-H, Pai H-S. Interaction of NtCDPK1 calcium-dependent protein kinase with NtRpn3 regulatory subunit of the 26S proteasome in Nicotiana tabacum. Plant J. 2013;33:825–840. PubMed

Levine SS, King IFG, Kingston RE. Division of labor in polycomb group repression. Trends Biochem Sci. 2004;29:478–485. PubMed

Liu J, Zhang J, Zhang J, Miao H, Wang J, Gao P, Hu W, Jia C, Wang Z, Xu B, Jin Z. Genome-wide analysis of banana MADS-box family closely related to fruit development and ripening. Sci Rep. 2017;7:1–13. PubMed PMC

Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, Powell C, Vedantam S, Buchkovich ML, Yang J, Lifelines Cohort Study, ADIPOGen Consortium, AGEN, BMI Working Group, CARDIOGRAMplusC4D Consortium, CKDGen Consortium, GLGC, ICBP, MAGIC Investigators, MuTHER Consortium, MIGen Consortium, PAGE Consortium, ReproGen Consortium, GENIE Consortium, International Endogene Consortium et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206. PubMed PMC

Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–753. PubMed PMC

Martin G, Baurens FC, Droc G, Rouard M, Cenci A, Kilian A, Hastie A, Doležel J, Aury JM, Alberti A, et al. Improvement of the banana “Musa acuminata” reference sequence using NGS data and semi-automated bioinformatics methods. BMC Genom. 2016;17:1–12. PubMed PMC

Martin G, Carreel F, Coriton O, Hervouet C, Cardi C, Derouault P, Roques D, Salmon F, Rouard M, Sardos J, et al. Evolution of the banana genome (Musa acuminata) is impacted by large chromosomal translocations. Mol Biol Evolut. 2017;34:2140–2152. PubMed PMC

McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JPA, Hirschhorn JN. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet. 2008;9:356–369. PubMed

Müller BSF, Filho JEA, Lima BM, Garcia CC, Missiaggia A, Aguiar AM, Takahashi E, Kirst M, Gezan SA, Silva-junior OB, et al. Independent and Joint-GWAS for growth traits in Eucalyptus by assembling genome-wide data for 3373 individuals across four breeding populations. New Phytol. 2019;221:818–833. PubMed

Nadolska-Orczyk A, Rajchel IK, Orczyk W, Gasparis S. Major genes determining yield-related traits in wheat and barley. Theor Appl Genet. 2017;130:1081–1098. PubMed PMC

Němečková A, Christelová P, Čížková J, Nyine M, Van den Houwe I, Svačina R, Uwimana B, Swennen R, Doležel J, Hřibová E. Molecular and cytogenetic study of East African highland banana. Front Plant Sci. 2018 doi: 10.3389/fpls.2018.01371. PubMed DOI PMC

Neph S, Kuehn MS, Reynolds AP, Haugen E, Thurman RE, Johnson AK, Rynes E, Maurano MT, Vierstra J, Thomas S, et al. BEDOPS: high-performance genomic feature operations. Bioinformatics. 2012;28:1919–1920. PubMed PMC

Nyine M, Uwimana B, Swennen R, Batte M, Brown A, Christelová P, Hřibová E, Lorenzen J, Doležel J. Trait variation and genetic diversity in a banana genomic selection training population. PLoS ONE. 2017;12:e0178734. PubMed PMC

Nyine M, Uwimana B, Blavet N, Hřibová E, Vanrespaille H, Batte M, Akech V, Brown A, Lorenzen J, Swennen R, Doležel J. Genomic prediction in a multiploid crop: genotype by environment interaction and allele dosage effects on predictive ability in banana. Plant Genome. 2018 doi: 10.3835/plantgenome2017.10.0090. PubMed DOI

Ortiz R, Vuylsteke D. Effect of the parthenocarpy gene P1 and ploidy on fruit and bunch traits of plantain banana hybrids. Heredity. 1995;75:460–465.

Ortiz R, Ferris RSB, Vuylsteke DR. Banana and plantain breeding. In: Gowen S, editor. Banana and plantain. London: Chapman & Hall; 1995. pp. 110–146.

Peiffer JA, Romay MC, Gore MA, Flint-Garcia SA, Zhang Z, Millard MJ, Gardner CA, McMullen MD, Holland JB, Bradbury PJ, Buckler ES. The genetic architecture of maize height. Genetics. 2014;196:1337–1356. PubMed PMC

Pireyre M, Burow M. Regulation of MYB and bHLH transcription factors: a glance at the protein level. Mol Plant. 2015;8:378–388. PubMed

Platt A, Viljálmsson BJ, Nordborg M. Conditions under which genome-wide association studies will be positively misleading. Genetics. 2010;186:1045–1052. PubMed PMC

R Core Team . R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2019.

Rafalski A. Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol. 2002;5:94–100. PubMed

Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES., IV Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA. 2001;98:11479–11484. PubMed PMC

Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF, et al. Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci USA. 2006;103:18656–18661. PubMed PMC

Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, Xie X, Byrne EH, McCarroll SA, Gaudet R, et al. Genome-wide detection and characterization of positive selection in human populations. Nature. 2007;449:913–918. PubMed PMC

Sardos J, Rouard M, Hueber Y, Cenci A, Hyma KE, van den Houwe I, Hřibová E, Courtois B, Roux N. A Genome-wide association study on the seedless phenotype in banana (Musa spp.) reveals the potential of a selected panel to detect candidate genes in a vegetatively propagated crop. PLoS ONE. 2016;11:e0154448. PubMed PMC

Simmonds NW. Segregation in some diploid bananas. J Genet. 1953;51:458–469.

Simmonds NW. Evolution of the bananas. London: Longmans, Green & Co.; 1962.

Swennen R, Vuylsteke D. Breeding black sigatoka resistant plantains with a wild banana. Trop Agric. 1993;70:74–77.

Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet. 2001;28:286–289. PubMed

Turner DW, Gibbs DJ. A functional approach to bunch formation in banana. In: Kema GHJ, Drenth A, editors. Achieving sustainable cultivation of bananas: volume 1—cultivation techniques. Cambridge: Burleigh Dodds Science Publishing; 2018.

Vuylsteke D, Swennen R, Ortiz R. Registration of 14 improved tropical Musa plantain hybrids with Black Sigatoka resistance. Hortic Sci. 1993;28:957–959.

Vuylsteke D, Swennen R, Ortiz R. Development and performance of Black Sigatoka-resistant tetraploid hybrids of plantain (Musa spp. AAB group) Euphytica. 1993;65:33–42.

Weil CF. Finding the crosswalks on DNA. Proc Natl Acad Sci USA. 2002;99:5763–5765. PubMed PMC

Whitt SR, Wilson LM, Tenaillon MI, Gaut BS, Buckler ES. Genetic diversity and selection in the maize starch pathway. Proc Natl Acad Sci USA. 2002;99:12959–12962. PubMed PMC

Xie Q, Guo H-S, Dallman G, Fang S, Weissman AM, Chua N-H. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature. 2002;419:167–170. PubMed

Yoshizawa-Sugata N, Masai H. Human Tim/Timeless-interacting protein, Tipin, is required for efficient progression of S phase and DNA replication checkpoint. J Biol Chem. 2007;282:2729–2740. PubMed

Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet. 2006;38:203–208. PubMed

Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM, et al. Mixed linear model approach adapted for genome-wide association studies. Nat Genet. 2010;42:355–360. PubMed PMC

Zhang Y, Li D, Zhang D, Zhao X, Cao X, Dong L, Liu J, Chen K, Zhang H, Gao C, Wang D. Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits. Plant J. 2018;94:857–866. PubMed

Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, et al. An Arabidopsis example of association mapping in structured samples. PLoS Genet. 2007;3:71–82. PubMed PMC

Zhao K, Tung C-W, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J, et al. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun. 2011;2:467. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...