Electrospinning of Hyaluronan Using Polymer Coelectrospinning and Intermediate Solvent
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NPU I (LO1504)
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.1.05/2.1.00/19.0409
Ministerstvo Školství, Mládeže a Tělovýchovy
IGA/FT/2018/011
Univerzita Tomáše Bati ve Zlíně
GA/FT/2019/012
Univerzita Tomáše Bati ve Zlíně
CZ.1.05/2.1.00/19.0376
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31540478
PubMed Central
PMC6780821
DOI
10.3390/polym11091517
PII: polym11091517
Knihovny.cz E-zdroje
- Klíčová slova
- electrospinning, fluorescence confocal microscopy, hyaluronan, intermediate solvent, nanofibers, poly(vinyl alcohol), polyethylene oxide,
- Publikační typ
- časopisecké články MeSH
In the current study, we present methods of sodium hyaluronate, also denoted as hyaluronan (HA), nanofiber fabrication using a direct-current (DC) electric field. HA was spun in combination with poly(vinyl alcohol) (PVA) and polyethylene oxide (PEO) and as a pure polymer. Nonaggressive solvents were used due to the possible use of the fibers in life sciences. The influences of polymer concentration, average molecular weight (Mw), viscosity, and solution surface tension were analyzed. HA and PVA were fluorescent-labeled in order to examine the electrospun structures using fluorescence confocal microscopy. In this study, two intermediate solvent mixtures that facilitate HA electrospinning were found. In the case of polymer co-electrospinning, the effect of the surfactant content on the HA/PVA electrospinning process, and the effect of HA Mw on HA/PEO nanofiber morphology, were examined, respectively.
Zobrazit více v PubMed
Cooley J. Apparatus for Electrically Dispersing Fluids. 692631. U.S. Patent. 1902 Feb 4;
Morton W. Method of Dispersing Fluids. 705691. U.S. Patent. 1902 Jul 29;
Lukáš D., Sarkar A., Martinová L., Vodseďálková K., Lubasová D., Chaloupek J., Pokorný P., Mikeš P., Chvojka J., Komárek M. Physical principles of electrospinning (electrospinning as a nano-scale technology of the twenty-first century) Text. Prog. 2009;41:59–140. doi: 10.1080/00405160902904641. DOI
Reneker D., Yarin A. Electrospinning jets and polymer nanofibers. Polymer. 2008;49:2387–2425. doi: 10.1016/j.polymer.2008.02.002. DOI
Xiao B., Wang W., Zhiang X., Long G., Fan J., Chen H., Deng L. A novel fractal solution for permeability and Kozeny-Carman constant of fibrous porous media made up of solid particles and porous fibers. Powder Technol. 2019;349:92–98. doi: 10.1016/j.powtec.2019.03.028. DOI
Liang M., Fu C., Xiao B., Luo L., Wang Z. A fractal study for the effective electrolyte diffusion through charged porous media. Int. J. Heat Mass Transf. 2019;137:365–371. doi: 10.1016/j.ijheatmasstransfer.2019.03.141. DOI
Xiao B., Zhang X., Jiang G., Long G., Wang W., Zhang Y., Liu G. Kozeny-Carman constant for gas flow through fibrous porous media by fractal-Monte Carlo simulations. Fractals. 2019;27:1950062. doi: 10.1142/S0218348X19500622. DOI
Xiao B., Wang W., Zhang X., Long G., Chen H., Deng L. A novel fractal model for relative permeability of gas diffusion layer in proton exchange membrane fuel cell with capillary pressure effect. Fractals. 2019;27:1950012. doi: 10.1142/S0218348X19500129. DOI
Liang M., Liu Y., Xiao B., Yang S., Wang Z., Han H. An analytical model for the transverse permeability of gas diffusion layer with electrical double layer effects in proton exchange membrane fuel cells. Int. J. Hydrog. Energy. 2018;43:17880–17888. doi: 10.1016/j.ijhydene.2018.07.186. DOI
Long G., Xu G. The Effects of Perforation Erosion on Practical Hydraulic-Fracturing Applications. SPE Prod. Oper. 2017;22:645–659. doi: 10.2118/185173-PA. DOI
Long G., Liu S., Xu G., Wong S., Chen H., Xiao B. A Perforation-Erosion Model for Hydraulic-Fracturing Applications. SPE Prod. Oper. 2018;33:770–783. doi: 10.2118/174959-PA. DOI
Sofi H., Akram T., Tamboli A., Majeed A., Shabir N., Sheikh F. Novel lavender oil and silver nanoparticles simultaneously loaded onto polyurethane nanofibers for wound-healing applications. Int. J. Pharm. 2019;569:118590. doi: 10.1016/j.ijpharm.2019.118590. PubMed DOI
Afshar S., Rashedi S., Nazockdast H., Ghazalian M. Preparation and characterization of electrospun poly(lactic acid)-chitosan core–shell nanofibers with a new solvent system. Int. J. Biol. Macromol. 2019;138:1130–1137. doi: 10.1016/j.ijbiomac.2019.07.053. PubMed DOI
Lee K.Y., Jeong L., Kang Y.O., Lee S.J., Park W.H. Electrospinning of polysaccharides for regenerative medicine. Adv. Drug Deliv. Rev. 2009;61:1020–1032. doi: 10.1016/j.addr.2009.07.006. PubMed DOI
Hampejsova Z., Batek J., Sirc J., Hobzova R., Bosakova Z. Polylactide/polyethylene glycol fibrous mats for local paclitaxel delivery: comparison of drug release into liquid medium and to HEMA-based hydrogel model. Monatsh. Chem. 2019 doi: 10.1007/s00706-019-02469-5. DOI
Yin Y., Zhao X., Xiong J. Modeling Analysis of Silk Fibroin/Poly(ε-caprolactone) Nanofibrous Membrane under Uniaxial Tension. Nanomaterials. 2019;9 doi: 10.3390/nano9081149. PubMed DOI PMC
Mombini S., Mohammadnejad J., BakhsHandeh B., Narmani A., Nourmohammadi J., Vahdat S., Zirak S. Chitosan-PVA-CNT nanofibers as electrically conductive scaffolds for cardiovascular tissue engineering. Int. J. Biol. Macromol. 2019;140:278–287. doi: 10.1016/j.ijbiomac.2019.08.046. PubMed DOI
Agarwal S., Wendorff J., Greiner A. Use of electrospinning technique for biomedical applications. Polymer. 2008;49:5603–5621. doi: 10.1016/j.polymer.2008.09.014. DOI
Son W., Youk J., Lee T., Park W. The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer. 2004;45:2959–2966. doi: 10.1016/j.polymer.2004.03.006. DOI
Jin H., Fridrikh S., Rutledge G., Kaplan D. Electrospinning Bombyx mori Silk with Poly (ethylene oxide) Biomacromolecules. 2002;3:1233–1239. doi: 10.1021/bm025581u. PubMed DOI
Chung S., Son S., Min J. The nanostructure effect on the adhesion and growth rates of epithelial cells with well-defined nanoporous alumina substrates. Nanotechnology. 2010;21:1–7. doi: 10.1088/0957-4484/21/12/125104. PubMed DOI
Mori A., Fernandéz M., Blunn G., Tozzi G., Roldo M. 3D Printing and Electrospinning of Composite Hydrogels for Cartilage and Bone Tissue Engineering. Polymers. 2018;10:285. doi: 10.3390/polym10030285. PubMed DOI PMC
Ingr M., Kutálková E., Hrnčiřík J. Hyaluronan random coils in electrolyte solutions—A molecular dynamics study. Carbohydr. Polym. 2017;170:289–295. doi: 10.1016/j.carbpol.2017.04.054. PubMed DOI
Gřundělová L., Mráček A., Kašpárková V., Minařík A., Smolka P. The influence of quarternary salt on hyaluronan conformation and particle size in solution. Carbohyd. Polym. 2013;98:1039–1044. doi: 10.1016/j.carbpol.2013.06.057. PubMed DOI
Musilová L., Kašpárková V., Mráček A., Minařík A., Minařík M. The behaviour of hyaluronan solutions in the presence of Hofmeister ions: A light scattering, viscometry and surface tension study. Carbohydr. Polym. 2019;212:395–402. doi: 10.1016/j.carbpol.2019.02.032. PubMed DOI
Cowman M., Matsuoka S. Experimental approaches to hyaluronan structure. Carbohyd. Res. 2005;340:791–809. doi: 10.1016/j.carres.2005.01.022. PubMed DOI
Um I., Fang D., Hsiao B., Okamoto A., Chu B. Electro-Spinning and Electro-Blowing of Hyaluronic Acid. Biomacromolecules. 2004;5:1428–1436. doi: 10.1021/bm034539b. PubMed DOI
Caspersen M., Roubroeks J., Qun L., Shan H., Fogh J., RuiDong Z., Tommeraas K. Thermal degradation and stability of sodium hyaluronate in solid state. Carbohyd. Polym. 2014;107:25–30. doi: 10.1016/j.carbpol.2014.02.005. PubMed DOI
Xie J., Hsieh Y. Ultra-high surface fibrous membranes from electrospinning of natural proteins: casein and lipase enzyme. J. Mater. Sci. 2003;38:2125–2133. doi: 10.1023/A:1023763727747. DOI
Ma H., Chen G., Zhang J., Liu Y., Nie J., Ma G. Facile fabrication of core–shell polyelectrolyte complexes nanofibers based on electric field induced phase separation. Polymer. 2017;110:80–86. doi: 10.1016/j.polymer.2016.12.062. DOI
Uppal R., Ramaswamy G., Arnold C., Goodband R., Wang Y. Hyaluronic acid nanofiber wound dressing-production, characterization, and in vivo behavior. J. Biomed. Mater. Res. Part B Appl. Biomater. 2011;97B:20–29. doi: 10.1002/jbm.b.31776. PubMed DOI
Liu Y., Ma G., Fang D., Xu J., Zhang H., Nie J. Effects of solution properties and electric field on the electrospinning of hyaluronic acid. Carbohydr. Polym. 2011;83:1011–1015. doi: 10.1016/j.carbpol.2010.08.061. DOI
Brenner E., Schiffman J., Thompson E., Toth L., Schauer C. Electrospinning of hyaluronic acid nanofibers from aqueous ammonium solutions. Carbohydr. Polym. 2012;87:926–929. doi: 10.1016/j.carbpol.2011.07.033. PubMed DOI
Malkin A., Semakov A., Skvortsov I., Zatonskikh P., Kulichikhin V., Subbotin A., Semenov A. Spinnability of Dilute Polymer Solutions. Macromolecules. 2017;50:8231–8244. doi: 10.1021/acs.macromol.7b00687. DOI
Yu J.H., Fridrikh S.V., Rutledge G.C. The role of elasticity in the formation of electrospun fibers. Polymer. 2006;47:4789–4797. doi: 10.1016/j.polymer.2006.04.050. DOI
Stepanyan R., Subbotin A., Cuperus L., Boonen P., Dorschu M., Oosterlinck F., Butlers M. Fiber diameter control in electrospinning. Appl. Phys. Lett. 2014;105 doi: 10.1063/1.4900778. DOI
Palangetic L., Reddy N., Srinivasan S., Cohen R.E., McKinley G.H., Clasen C. Dispersity and spinnability: Why highly polydisperse polymer solutions are desirable for electrospinning. Polymer. 2014;55:4920–4931. doi: 10.1016/j.polymer.2014.07.047. DOI
Stepanyan R., Subbotin A.V., Cuperus L., Boonen P., Dorschu M., Oosterlinck F., Butlers M.J.H. Nanofiber diameter in electrospinning of polymer solutions: Model and experiment. Polymer. 2016;97:428–439. doi: 10.1016/j.polymer.2016.05.045. DOI
Shenoy S., Bates W., Frish H., Wnek G. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, no-specific polymer-polymer interaction limit. Polymer. 2005;46:3372–3384. doi: 10.1016/j.polymer.2005.03.011. DOI
Rogina A. Electrospinning process: Versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery. Appl. Surf. Sci. 2014;296:221–230. doi: 10.1016/j.apsusc.2014.01.098. DOI
Miloh T., Spivak B., Yarin A. Needleless electrospinning: Electrically driven instability and multiple jetting from the free surface of a spherical liquid layer. J. Appl. Phys. 2009;106:114910. doi: 10.1063/1.3264884. DOI
Luo C., Nangrejo M., Edirisinghe M. A novel method of selecting solvents for polymer electrospinning. Polymer. 2010;51:1654–1662. doi: 10.1016/j.polymer.2010.01.031. DOI
Huerta-Angeles G., Němcová M., Příkopová E., Šmejkalová D., Pravda M., Velebný V. Reductive alkylation of hyaluronic acid for the synthesis of biocompatible hydrogels by click chemistry. Carbohydr. Polym. 2012;90:1704–1711. doi: 10.1016/j.carbpol.2012.07.054. PubMed DOI
Šmejkalová D., Muthný T., Nešporová K., Hermannová M., Achbergerová E., Huerta-Angeles G., Svoboda M., Čepa M., Machalová V., Luptáková D., et al. Hyaluronan polymeric micelles for topical drug delivery. Carbohydr. Polym. 2017;156:86–96. doi: 10.1016/j.carbpol.2016.09.013. PubMed DOI
Kaneo Y., Hashihama S., Kakinoki A., Tanaka T., Nakano T., Ikeda Y. Pharmacokinetics and Biodisposition of Poly(vinyl alcohol) in Rats and Mice. Drug Metab. Pharmacokin. 2005;20:435–442. doi: 10.2133/dmpk.20.435. PubMed DOI
Yarin A., Koombhongse S., Reneker D. Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J. Appl. Phys. 2001;90:4836–4846. doi: 10.1063/1.1408260. DOI
Jurošková D. Charakterizace Hyaluronanu Sodného ve VodnýCh Roztocích a Na fázových Rozhraních. Department of Physics and Materials Engineering, Thomas Bata University in Zlín; Zlín, Czech Republic: 2017.
Kim M., Cao B. Additional Reduction of Surface Tension of Aqueous Polyethylene Oxide (PEO) Solution at High Polymer Concentration. Europhys. Lett. 1993;24:229–234. doi: 10.1209/0295-5075/24/3/012. DOI
Han C. A Study of Coextrusion in a Circular Die. J. Appl. Polym. Sci. 1975;19:1875–1883. doi: 10.1002/app.1975.070190708. DOI