Electrospinning of Hyaluronan Using Polymer Coelectrospinning and Intermediate Solvent

. 2019 Sep 18 ; 11 (9) : . [epub] 20190918

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31540478

Grantová podpora
NPU I (LO1504) Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.1.05/2.1.00/19.0409 Ministerstvo Školství, Mládeže a Tělovýchovy
IGA/FT/2018/011 Univerzita Tomáše Bati ve Zlíně
GA/FT/2019/012 Univerzita Tomáše Bati ve Zlíně
CZ.1.05/2.1.00/19.0376 Ministerstvo Školství, Mládeže a Tělovýchovy

In the current study, we present methods of sodium hyaluronate, also denoted as hyaluronan (HA), nanofiber fabrication using a direct-current (DC) electric field. HA was spun in combination with poly(vinyl alcohol) (PVA) and polyethylene oxide (PEO) and as a pure polymer. Nonaggressive solvents were used due to the possible use of the fibers in life sciences. The influences of polymer concentration, average molecular weight (Mw), viscosity, and solution surface tension were analyzed. HA and PVA were fluorescent-labeled in order to examine the electrospun structures using fluorescence confocal microscopy. In this study, two intermediate solvent mixtures that facilitate HA electrospinning were found. In the case of polymer co-electrospinning, the effect of the surfactant content on the HA/PVA electrospinning process, and the effect of HA Mw on HA/PEO nanofiber morphology, were examined, respectively.

Zobrazit více v PubMed

Cooley J. Apparatus for Electrically Dispersing Fluids. 692631. U.S. Patent. 1902 Feb 4;

Morton W. Method of Dispersing Fluids. 705691. U.S. Patent. 1902 Jul 29;

Lukáš D., Sarkar A., Martinová L., Vodseďálková K., Lubasová D., Chaloupek J., Pokorný P., Mikeš P., Chvojka J., Komárek M. Physical principles of electrospinning (electrospinning as a nano-scale technology of the twenty-first century) Text. Prog. 2009;41:59–140. doi: 10.1080/00405160902904641. DOI

Reneker D., Yarin A. Electrospinning jets and polymer nanofibers. Polymer. 2008;49:2387–2425. doi: 10.1016/j.polymer.2008.02.002. DOI

Xiao B., Wang W., Zhiang X., Long G., Fan J., Chen H., Deng L. A novel fractal solution for permeability and Kozeny-Carman constant of fibrous porous media made up of solid particles and porous fibers. Powder Technol. 2019;349:92–98. doi: 10.1016/j.powtec.2019.03.028. DOI

Liang M., Fu C., Xiao B., Luo L., Wang Z. A fractal study for the effective electrolyte diffusion through charged porous media. Int. J. Heat Mass Transf. 2019;137:365–371. doi: 10.1016/j.ijheatmasstransfer.2019.03.141. DOI

Xiao B., Zhang X., Jiang G., Long G., Wang W., Zhang Y., Liu G. Kozeny-Carman constant for gas flow through fibrous porous media by fractal-Monte Carlo simulations. Fractals. 2019;27:1950062. doi: 10.1142/S0218348X19500622. DOI

Xiao B., Wang W., Zhang X., Long G., Chen H., Deng L. A novel fractal model for relative permeability of gas diffusion layer in proton exchange membrane fuel cell with capillary pressure effect. Fractals. 2019;27:1950012. doi: 10.1142/S0218348X19500129. DOI

Liang M., Liu Y., Xiao B., Yang S., Wang Z., Han H. An analytical model for the transverse permeability of gas diffusion layer with electrical double layer effects in proton exchange membrane fuel cells. Int. J. Hydrog. Energy. 2018;43:17880–17888. doi: 10.1016/j.ijhydene.2018.07.186. DOI

Long G., Xu G. The Effects of Perforation Erosion on Practical Hydraulic-Fracturing Applications. SPE Prod. Oper. 2017;22:645–659. doi: 10.2118/185173-PA. DOI

Long G., Liu S., Xu G., Wong S., Chen H., Xiao B. A Perforation-Erosion Model for Hydraulic-Fracturing Applications. SPE Prod. Oper. 2018;33:770–783. doi: 10.2118/174959-PA. DOI

Sofi H., Akram T., Tamboli A., Majeed A., Shabir N., Sheikh F. Novel lavender oil and silver nanoparticles simultaneously loaded onto polyurethane nanofibers for wound-healing applications. Int. J. Pharm. 2019;569:118590. doi: 10.1016/j.ijpharm.2019.118590. PubMed DOI

Afshar S., Rashedi S., Nazockdast H., Ghazalian M. Preparation and characterization of electrospun poly(lactic acid)-chitosan core–shell nanofibers with a new solvent system. Int. J. Biol. Macromol. 2019;138:1130–1137. doi: 10.1016/j.ijbiomac.2019.07.053. PubMed DOI

Lee K.Y., Jeong L., Kang Y.O., Lee S.J., Park W.H. Electrospinning of polysaccharides for regenerative medicine. Adv. Drug Deliv. Rev. 2009;61:1020–1032. doi: 10.1016/j.addr.2009.07.006. PubMed DOI

Hampejsova Z., Batek J., Sirc J., Hobzova R., Bosakova Z. Polylactide/polyethylene glycol fibrous mats for local paclitaxel delivery: comparison of drug release into liquid medium and to HEMA-based hydrogel model. Monatsh. Chem. 2019 doi: 10.1007/s00706-019-02469-5. DOI

Yin Y., Zhao X., Xiong J. Modeling Analysis of Silk Fibroin/Poly(ε-caprolactone) Nanofibrous Membrane under Uniaxial Tension. Nanomaterials. 2019;9 doi: 10.3390/nano9081149. PubMed DOI PMC

Mombini S., Mohammadnejad J., BakhsHandeh B., Narmani A., Nourmohammadi J., Vahdat S., Zirak S. Chitosan-PVA-CNT nanofibers as electrically conductive scaffolds for cardiovascular tissue engineering. Int. J. Biol. Macromol. 2019;140:278–287. doi: 10.1016/j.ijbiomac.2019.08.046. PubMed DOI

Agarwal S., Wendorff J., Greiner A. Use of electrospinning technique for biomedical applications. Polymer. 2008;49:5603–5621. doi: 10.1016/j.polymer.2008.09.014. DOI

Son W., Youk J., Lee T., Park W. The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer. 2004;45:2959–2966. doi: 10.1016/j.polymer.2004.03.006. DOI

Jin H., Fridrikh S., Rutledge G., Kaplan D. Electrospinning Bombyx mori Silk with Poly (ethylene oxide) Biomacromolecules. 2002;3:1233–1239. doi: 10.1021/bm025581u. PubMed DOI

Chung S., Son S., Min J. The nanostructure effect on the adhesion and growth rates of epithelial cells with well-defined nanoporous alumina substrates. Nanotechnology. 2010;21:1–7. doi: 10.1088/0957-4484/21/12/125104. PubMed DOI

Mori A., Fernandéz M., Blunn G., Tozzi G., Roldo M. 3D Printing and Electrospinning of Composite Hydrogels for Cartilage and Bone Tissue Engineering. Polymers. 2018;10:285. doi: 10.3390/polym10030285. PubMed DOI PMC

Ingr M., Kutálková E., Hrnčiřík J. Hyaluronan random coils in electrolyte solutions—A molecular dynamics study. Carbohydr. Polym. 2017;170:289–295. doi: 10.1016/j.carbpol.2017.04.054. PubMed DOI

Gřundělová L., Mráček A., Kašpárková V., Minařík A., Smolka P. The influence of quarternary salt on hyaluronan conformation and particle size in solution. Carbohyd. Polym. 2013;98:1039–1044. doi: 10.1016/j.carbpol.2013.06.057. PubMed DOI

Musilová L., Kašpárková V., Mráček A., Minařík A., Minařík M. The behaviour of hyaluronan solutions in the presence of Hofmeister ions: A light scattering, viscometry and surface tension study. Carbohydr. Polym. 2019;212:395–402. doi: 10.1016/j.carbpol.2019.02.032. PubMed DOI

Cowman M., Matsuoka S. Experimental approaches to hyaluronan structure. Carbohyd. Res. 2005;340:791–809. doi: 10.1016/j.carres.2005.01.022. PubMed DOI

Um I., Fang D., Hsiao B., Okamoto A., Chu B. Electro-Spinning and Electro-Blowing of Hyaluronic Acid. Biomacromolecules. 2004;5:1428–1436. doi: 10.1021/bm034539b. PubMed DOI

Caspersen M., Roubroeks J., Qun L., Shan H., Fogh J., RuiDong Z., Tommeraas K. Thermal degradation and stability of sodium hyaluronate in solid state. Carbohyd. Polym. 2014;107:25–30. doi: 10.1016/j.carbpol.2014.02.005. PubMed DOI

Xie J., Hsieh Y. Ultra-high surface fibrous membranes from electrospinning of natural proteins: casein and lipase enzyme. J. Mater. Sci. 2003;38:2125–2133. doi: 10.1023/A:1023763727747. DOI

Ma H., Chen G., Zhang J., Liu Y., Nie J., Ma G. Facile fabrication of core–shell polyelectrolyte complexes nanofibers based on electric field induced phase separation. Polymer. 2017;110:80–86. doi: 10.1016/j.polymer.2016.12.062. DOI

Uppal R., Ramaswamy G., Arnold C., Goodband R., Wang Y. Hyaluronic acid nanofiber wound dressing-production, characterization, and in vivo behavior. J. Biomed. Mater. Res. Part B Appl. Biomater. 2011;97B:20–29. doi: 10.1002/jbm.b.31776. PubMed DOI

Liu Y., Ma G., Fang D., Xu J., Zhang H., Nie J. Effects of solution properties and electric field on the electrospinning of hyaluronic acid. Carbohydr. Polym. 2011;83:1011–1015. doi: 10.1016/j.carbpol.2010.08.061. DOI

Brenner E., Schiffman J., Thompson E., Toth L., Schauer C. Electrospinning of hyaluronic acid nanofibers from aqueous ammonium solutions. Carbohydr. Polym. 2012;87:926–929. doi: 10.1016/j.carbpol.2011.07.033. PubMed DOI

Malkin A., Semakov A., Skvortsov I., Zatonskikh P., Kulichikhin V., Subbotin A., Semenov A. Spinnability of Dilute Polymer Solutions. Macromolecules. 2017;50:8231–8244. doi: 10.1021/acs.macromol.7b00687. DOI

Yu J.H., Fridrikh S.V., Rutledge G.C. The role of elasticity in the formation of electrospun fibers. Polymer. 2006;47:4789–4797. doi: 10.1016/j.polymer.2006.04.050. DOI

Stepanyan R., Subbotin A., Cuperus L., Boonen P., Dorschu M., Oosterlinck F., Butlers M. Fiber diameter control in electrospinning. Appl. Phys. Lett. 2014;105 doi: 10.1063/1.4900778. DOI

Palangetic L., Reddy N., Srinivasan S., Cohen R.E., McKinley G.H., Clasen C. Dispersity and spinnability: Why highly polydisperse polymer solutions are desirable for electrospinning. Polymer. 2014;55:4920–4931. doi: 10.1016/j.polymer.2014.07.047. DOI

Stepanyan R., Subbotin A.V., Cuperus L., Boonen P., Dorschu M., Oosterlinck F., Butlers M.J.H. Nanofiber diameter in electrospinning of polymer solutions: Model and experiment. Polymer. 2016;97:428–439. doi: 10.1016/j.polymer.2016.05.045. DOI

Shenoy S., Bates W., Frish H., Wnek G. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, no-specific polymer-polymer interaction limit. Polymer. 2005;46:3372–3384. doi: 10.1016/j.polymer.2005.03.011. DOI

Rogina A. Electrospinning process: Versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery. Appl. Surf. Sci. 2014;296:221–230. doi: 10.1016/j.apsusc.2014.01.098. DOI

Miloh T., Spivak B., Yarin A. Needleless electrospinning: Electrically driven instability and multiple jetting from the free surface of a spherical liquid layer. J. Appl. Phys. 2009;106:114910. doi: 10.1063/1.3264884. DOI

Luo C., Nangrejo M., Edirisinghe M. A novel method of selecting solvents for polymer electrospinning. Polymer. 2010;51:1654–1662. doi: 10.1016/j.polymer.2010.01.031. DOI

Huerta-Angeles G., Němcová M., Příkopová E., Šmejkalová D., Pravda M., Velebný V. Reductive alkylation of hyaluronic acid for the synthesis of biocompatible hydrogels by click chemistry. Carbohydr. Polym. 2012;90:1704–1711. doi: 10.1016/j.carbpol.2012.07.054. PubMed DOI

Šmejkalová D., Muthný T., Nešporová K., Hermannová M., Achbergerová E., Huerta-Angeles G., Svoboda M., Čepa M., Machalová V., Luptáková D., et al. Hyaluronan polymeric micelles for topical drug delivery. Carbohydr. Polym. 2017;156:86–96. doi: 10.1016/j.carbpol.2016.09.013. PubMed DOI

Kaneo Y., Hashihama S., Kakinoki A., Tanaka T., Nakano T., Ikeda Y. Pharmacokinetics and Biodisposition of Poly(vinyl alcohol) in Rats and Mice. Drug Metab. Pharmacokin. 2005;20:435–442. doi: 10.2133/dmpk.20.435. PubMed DOI

Yarin A., Koombhongse S., Reneker D. Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J. Appl. Phys. 2001;90:4836–4846. doi: 10.1063/1.1408260. DOI

Jurošková D. Charakterizace Hyaluronanu Sodného ve VodnýCh Roztocích a Na fázových Rozhraních. Department of Physics and Materials Engineering, Thomas Bata University in Zlín; Zlín, Czech Republic: 2017.

Kim M., Cao B. Additional Reduction of Surface Tension of Aqueous Polyethylene Oxide (PEO) Solution at High Polymer Concentration. Europhys. Lett. 1993;24:229–234. doi: 10.1209/0295-5075/24/3/012. DOI

Han C. A Study of Coextrusion in a Circular Die. J. Appl. Polym. Sci. 1975;19:1875–1883. doi: 10.1002/app.1975.070190708. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Polymer Biointerfaces

. 2020 Apr 02 ; 12 (4) : . [epub] 20200402

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace